Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sunhme.c
Go to the documentation of this file.
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  * auto carrier detecting ethernet driver. Also known as the
3  * "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6  * 2006, 2008 David S. Miller ([email protected])
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  * - port to non-sparc architectures. Tested only on x86 and
11  * only currently works with QFE PCI cards.
12  * - ability to specify the MAC address at module load time by passing this
13  * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
38 
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
42 
43 #ifdef CONFIG_SPARC
44 #include <linux/of.h>
45 #include <linux/of_device.h>
46 #include <asm/idprom.h>
47 #include <asm/openprom.h>
48 #include <asm/oplib.h>
49 #include <asm/prom.h>
50 #include <asm/auxio.h>
51 #endif
52 #include <asm/uaccess.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/irq.h>
56 
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
60 
61 #include "sunhme.h"
62 
63 #define DRV_NAME "sunhme"
64 #define DRV_VERSION "3.10"
65 #define DRV_RELDATE "August 26, 2008"
66 #define DRV_AUTHOR "David S. Miller ([email protected])"
67 
68 static char version[] =
69  DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
70 
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
75 
76 static int macaddr[6];
77 
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
81 
82 #ifdef CONFIG_SBUS
83 static struct quattro *qfe_sbus_list;
84 #endif
85 
86 #ifdef CONFIG_PCI
87 static struct quattro *qfe_pci_list;
88 #endif
89 
90 #undef HMEDEBUG
91 #undef SXDEBUG
92 #undef RXDEBUG
93 #undef TXDEBUG
94 #undef TXLOGGING
95 
96 #ifdef TXLOGGING
97 struct hme_tx_logent {
98  unsigned int tstamp;
99  int tx_new, tx_old;
100  unsigned int action;
101 #define TXLOG_ACTION_IRQ 0x01
102 #define TXLOG_ACTION_TXMIT 0x02
103 #define TXLOG_ACTION_TBUSY 0x04
104 #define TXLOG_ACTION_NBUFS 0x08
105  unsigned int status;
106 };
107 #define TX_LOG_LEN 128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 {
112  struct hme_tx_logent *tlp;
113  unsigned long flags;
114 
115  local_irq_save(flags);
116  tlp = &tx_log[txlog_cur_entry];
117  tlp->tstamp = (unsigned int)jiffies;
118  tlp->tx_new = hp->tx_new;
119  tlp->tx_old = hp->tx_old;
120  tlp->action = a;
121  tlp->status = s;
122  txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123  local_irq_restore(flags);
124 }
125 static __inline__ void tx_dump_log(void)
126 {
127  int i, this;
128 
129  this = txlog_cur_entry;
130  for (i = 0; i < TX_LOG_LEN; i++) {
131  printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132  tx_log[this].tstamp,
133  tx_log[this].tx_new, tx_log[this].tx_old,
134  tx_log[this].action, tx_log[this].status);
135  this = (this + 1) & (TX_LOG_LEN - 1);
136  }
137 }
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 {
140  struct hmeal_init_block *hb = hp->happy_block;
141  struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142  int i;
143 
144  for (i = 0; i < TX_RING_SIZE; i+=4) {
145  printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146  i, i + 4,
147  le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148  le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149  le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150  le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
151  }
152 }
153 #else
154 #define tx_add_log(hp, a, s) do { } while(0)
155 #define tx_dump_log() do { } while(0)
156 #define tx_dump_ring(hp) do { } while(0)
157 #endif
158 
159 #ifdef HMEDEBUG
160 #define HMD(x) printk x
161 #else
162 #define HMD(x)
163 #endif
164 
165 /* #define AUTO_SWITCH_DEBUG */
166 
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x) printk x
169 #else
170 #define ASD(x)
171 #endif
172 
173 #define DEFAULT_IPG0 16 /* For lance-mode only */
174 #define DEFAULT_IPG1 8 /* For all modes */
175 #define DEFAULT_IPG2 4 /* For all modes */
176 #define DEFAULT_JAMSIZE 4 /* Toe jam */
177 
178 /* NOTE: In the descriptor writes one _must_ write the address
179  * member _first_. The card must not be allowed to see
180  * the updated descriptor flags until the address is
181  * correct. I've added a write memory barrier between
182  * the two stores so that I can sleep well at night... -DaveM
183  */
184 
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 {
188  sbus_writel(val, reg);
189 }
190 
191 static u32 sbus_hme_read32(void __iomem *reg)
192 {
193  return sbus_readl(reg);
194 }
195 
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 {
198  rxd->rx_addr = (__force hme32)addr;
199  wmb();
200  rxd->rx_flags = (__force hme32)flags;
201 }
202 
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 {
205  txd->tx_addr = (__force hme32)addr;
206  wmb();
207  txd->tx_flags = (__force hme32)flags;
208 }
209 
210 static u32 sbus_hme_read_desc32(hme32 *p)
211 {
212  return (__force u32)*p;
213 }
214 
215 static void pci_hme_write32(void __iomem *reg, u32 val)
216 {
217  writel(val, reg);
218 }
219 
220 static u32 pci_hme_read32(void __iomem *reg)
221 {
222  return readl(reg);
223 }
224 
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 {
227  rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228  wmb();
229  rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
230 }
231 
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 {
234  txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235  wmb();
236  txd->tx_flags = (__force hme32)cpu_to_le32(flags);
237 }
238 
239 static u32 pci_hme_read_desc32(hme32 *p)
240 {
241  return le32_to_cpup((__le32 *)p);
242 }
243 
244 #define hme_write32(__hp, __reg, __val) \
245  ((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247  ((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249  ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251  ((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253  ((__hp)->read_desc32(__p))
254 #define hme_dma_map(__hp, __ptr, __size, __dir) \
255  ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
257  ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
259  ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
261  ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
262 #else
263 #ifdef CONFIG_SBUS
264 /* SBUS only compilation */
265 #define hme_write32(__hp, __reg, __val) \
266  sbus_writel((__val), (__reg))
267 #define hme_read32(__hp, __reg) \
268  sbus_readl(__reg)
269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
270 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
271  wmb(); \
272  (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
273 } while(0)
274 #define hme_write_txd(__hp, __txd, __flags, __addr) \
275 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
276  wmb(); \
277  (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
278 } while(0)
279 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
280 #define hme_dma_map(__hp, __ptr, __size, __dir) \
281  dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
283  dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
285  dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
287  dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
288 #else
289 /* PCI only compilation */
290 #define hme_write32(__hp, __reg, __val) \
291  writel((__val), (__reg))
292 #define hme_read32(__hp, __reg) \
293  readl(__reg)
294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
295 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
296  wmb(); \
297  (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
298 } while(0)
299 #define hme_write_txd(__hp, __txd, __flags, __addr) \
300 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
301  wmb(); \
302  (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
303 } while(0)
304 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
305 {
306  return le32_to_cpup((__le32 *)p);
307 }
308 #define hme_dma_map(__hp, __ptr, __size, __dir) \
309  pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
311  pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
313  pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
315  pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
316 #endif
317 #endif
318 
319 
320 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
321 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
322 {
323  hme_write32(hp, tregs + TCVR_BBDATA, bit);
324  hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
325  hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
326 }
327 
328 #if 0
329 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
330 {
331  u32 ret;
332 
333  hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
334  hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
335  ret = hme_read32(hp, tregs + TCVR_CFG);
336  if (internal)
337  ret &= TCV_CFG_MDIO0;
338  else
339  ret &= TCV_CFG_MDIO1;
340 
341  return ret;
342 }
343 #endif
344 
345 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
346 {
347  u32 retval;
348 
349  hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
350  udelay(1);
351  retval = hme_read32(hp, tregs + TCVR_CFG);
352  if (internal)
353  retval &= TCV_CFG_MDIO0;
354  else
355  retval &= TCV_CFG_MDIO1;
356  hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
357 
358  return retval;
359 }
360 
361 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
362 
363 static int happy_meal_bb_read(struct happy_meal *hp,
364  void __iomem *tregs, int reg)
365 {
366  u32 tmp;
367  int retval = 0;
368  int i;
369 
370  ASD(("happy_meal_bb_read: reg=%d ", reg));
371 
372  /* Enable the MIF BitBang outputs. */
373  hme_write32(hp, tregs + TCVR_BBOENAB, 1);
374 
375  /* Force BitBang into the idle state. */
376  for (i = 0; i < 32; i++)
377  BB_PUT_BIT(hp, tregs, 1);
378 
379  /* Give it the read sequence. */
380  BB_PUT_BIT(hp, tregs, 0);
381  BB_PUT_BIT(hp, tregs, 1);
382  BB_PUT_BIT(hp, tregs, 1);
383  BB_PUT_BIT(hp, tregs, 0);
384 
385  /* Give it the PHY address. */
386  tmp = hp->paddr & 0xff;
387  for (i = 4; i >= 0; i--)
388  BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
389 
390  /* Tell it what register we want to read. */
391  tmp = (reg & 0xff);
392  for (i = 4; i >= 0; i--)
393  BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
394 
395  /* Close down the MIF BitBang outputs. */
396  hme_write32(hp, tregs + TCVR_BBOENAB, 0);
397 
398  /* Now read in the value. */
399  (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
400  for (i = 15; i >= 0; i--)
401  retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
402  (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403  (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404  (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405  ASD(("value=%x\n", retval));
406  return retval;
407 }
408 
409 static void happy_meal_bb_write(struct happy_meal *hp,
410  void __iomem *tregs, int reg,
411  unsigned short value)
412 {
413  u32 tmp;
414  int i;
415 
416  ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
417 
418  /* Enable the MIF BitBang outputs. */
419  hme_write32(hp, tregs + TCVR_BBOENAB, 1);
420 
421  /* Force BitBang into the idle state. */
422  for (i = 0; i < 32; i++)
423  BB_PUT_BIT(hp, tregs, 1);
424 
425  /* Give it write sequence. */
426  BB_PUT_BIT(hp, tregs, 0);
427  BB_PUT_BIT(hp, tregs, 1);
428  BB_PUT_BIT(hp, tregs, 0);
429  BB_PUT_BIT(hp, tregs, 1);
430 
431  /* Give it the PHY address. */
432  tmp = (hp->paddr & 0xff);
433  for (i = 4; i >= 0; i--)
434  BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
435 
436  /* Tell it what register we will be writing. */
437  tmp = (reg & 0xff);
438  for (i = 4; i >= 0; i--)
439  BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
440 
441  /* Tell it to become ready for the bits. */
442  BB_PUT_BIT(hp, tregs, 1);
443  BB_PUT_BIT(hp, tregs, 0);
444 
445  for (i = 15; i >= 0; i--)
446  BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
447 
448  /* Close down the MIF BitBang outputs. */
449  hme_write32(hp, tregs + TCVR_BBOENAB, 0);
450 }
451 
452 #define TCVR_READ_TRIES 16
453 
454 static int happy_meal_tcvr_read(struct happy_meal *hp,
455  void __iomem *tregs, int reg)
456 {
457  int tries = TCVR_READ_TRIES;
458  int retval;
459 
460  ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
461  if (hp->tcvr_type == none) {
462  ASD(("no transceiver, value=TCVR_FAILURE\n"));
463  return TCVR_FAILURE;
464  }
465 
466  if (!(hp->happy_flags & HFLAG_FENABLE)) {
467  ASD(("doing bit bang\n"));
468  return happy_meal_bb_read(hp, tregs, reg);
469  }
470 
471  hme_write32(hp, tregs + TCVR_FRAME,
472  (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
473  while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
474  udelay(20);
475  if (!tries) {
476  printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
477  return TCVR_FAILURE;
478  }
479  retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
480  ASD(("value=%04x\n", retval));
481  return retval;
482 }
483 
484 #define TCVR_WRITE_TRIES 16
485 
486 static void happy_meal_tcvr_write(struct happy_meal *hp,
487  void __iomem *tregs, int reg,
488  unsigned short value)
489 {
490  int tries = TCVR_WRITE_TRIES;
491 
492  ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
493 
494  /* Welcome to Sun Microsystems, can I take your order please? */
495  if (!(hp->happy_flags & HFLAG_FENABLE)) {
496  happy_meal_bb_write(hp, tregs, reg, value);
497  return;
498  }
499 
500  /* Would you like fries with that? */
501  hme_write32(hp, tregs + TCVR_FRAME,
502  (FRAME_WRITE | (hp->paddr << 23) |
503  ((reg & 0xff) << 18) | (value & 0xffff)));
504  while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
505  udelay(20);
506 
507  /* Anything else? */
508  if (!tries)
509  printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
510 
511  /* Fifty-two cents is your change, have a nice day. */
512 }
513 
514 /* Auto negotiation. The scheme is very simple. We have a timer routine
515  * that keeps watching the auto negotiation process as it progresses.
516  * The DP83840 is first told to start doing it's thing, we set up the time
517  * and place the timer state machine in it's initial state.
518  *
519  * Here the timer peeks at the DP83840 status registers at each click to see
520  * if the auto negotiation has completed, we assume here that the DP83840 PHY
521  * will time out at some point and just tell us what (didn't) happen. For
522  * complete coverage we only allow so many of the ticks at this level to run,
523  * when this has expired we print a warning message and try another strategy.
524  * This "other" strategy is to force the interface into various speed/duplex
525  * configurations and we stop when we see a link-up condition before the
526  * maximum number of "peek" ticks have occurred.
527  *
528  * Once a valid link status has been detected we configure the BigMAC and
529  * the rest of the Happy Meal to speak the most efficient protocol we could
530  * get a clean link for. The priority for link configurations, highest first
531  * is:
532  * 100 Base-T Full Duplex
533  * 100 Base-T Half Duplex
534  * 10 Base-T Full Duplex
535  * 10 Base-T Half Duplex
536  *
537  * We start a new timer now, after a successful auto negotiation status has
538  * been detected. This timer just waits for the link-up bit to get set in
539  * the BMCR of the DP83840. When this occurs we print a kernel log message
540  * describing the link type in use and the fact that it is up.
541  *
542  * If a fatal error of some sort is signalled and detected in the interrupt
543  * service routine, and the chip is reset, or the link is ifconfig'd down
544  * and then back up, this entire process repeats itself all over again.
545  */
546 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
547 {
548  hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
549 
550  /* Downgrade from full to half duplex. Only possible
551  * via ethtool.
552  */
553  if (hp->sw_bmcr & BMCR_FULLDPLX) {
554  hp->sw_bmcr &= ~(BMCR_FULLDPLX);
555  happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
556  return 0;
557  }
558 
559  /* Downgrade from 100 to 10. */
560  if (hp->sw_bmcr & BMCR_SPEED100) {
561  hp->sw_bmcr &= ~(BMCR_SPEED100);
562  happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
563  return 0;
564  }
565 
566  /* We've tried everything. */
567  return -1;
568 }
569 
570 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
571 {
572  printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
573  if (hp->tcvr_type == external)
574  printk("external ");
575  else
576  printk("internal ");
577  printk("transceiver at ");
578  hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
579  if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
580  if (hp->sw_lpa & LPA_100FULL)
581  printk("100Mb/s, Full Duplex.\n");
582  else
583  printk("100Mb/s, Half Duplex.\n");
584  } else {
585  if (hp->sw_lpa & LPA_10FULL)
586  printk("10Mb/s, Full Duplex.\n");
587  else
588  printk("10Mb/s, Half Duplex.\n");
589  }
590 }
591 
592 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
593 {
594  printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
595  if (hp->tcvr_type == external)
596  printk("external ");
597  else
598  printk("internal ");
599  printk("transceiver at ");
600  hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
601  if (hp->sw_bmcr & BMCR_SPEED100)
602  printk("100Mb/s, ");
603  else
604  printk("10Mb/s, ");
605  if (hp->sw_bmcr & BMCR_FULLDPLX)
606  printk("Full Duplex.\n");
607  else
608  printk("Half Duplex.\n");
609 }
610 
611 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
612 {
613  int full;
614 
615  /* All we care about is making sure the bigmac tx_cfg has a
616  * proper duplex setting.
617  */
618  if (hp->timer_state == arbwait) {
619  hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
620  if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
621  goto no_response;
622  if (hp->sw_lpa & LPA_100FULL)
623  full = 1;
624  else if (hp->sw_lpa & LPA_100HALF)
625  full = 0;
626  else if (hp->sw_lpa & LPA_10FULL)
627  full = 1;
628  else
629  full = 0;
630  } else {
631  /* Forcing a link mode. */
632  hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
633  if (hp->sw_bmcr & BMCR_FULLDPLX)
634  full = 1;
635  else
636  full = 0;
637  }
638 
639  /* Before changing other bits in the tx_cfg register, and in
640  * general any of other the TX config registers too, you
641  * must:
642  * 1) Clear Enable
643  * 2) Poll with reads until that bit reads back as zero
644  * 3) Make TX configuration changes
645  * 4) Set Enable once more
646  */
648  hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
651  barrier();
652  if (full) {
653  hp->happy_flags |= HFLAG_FULL;
655  hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
657  } else {
658  hp->happy_flags &= ~(HFLAG_FULL);
660  hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
662  }
664  hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
665  BIGMAC_TXCFG_ENABLE);
666  return 0;
667 no_response:
668  return 1;
669 }
670 
671 static int happy_meal_init(struct happy_meal *hp);
672 
673 static int is_lucent_phy(struct happy_meal *hp)
674 {
675  void __iomem *tregs = hp->tcvregs;
676  unsigned short mr2, mr3;
677  int ret = 0;
678 
679  mr2 = happy_meal_tcvr_read(hp, tregs, 2);
680  mr3 = happy_meal_tcvr_read(hp, tregs, 3);
681  if ((mr2 & 0xffff) == 0x0180 &&
682  ((mr3 & 0xffff) >> 10) == 0x1d)
683  ret = 1;
684 
685  return ret;
686 }
687 
688 static void happy_meal_timer(unsigned long data)
689 {
690  struct happy_meal *hp = (struct happy_meal *) data;
691  void __iomem *tregs = hp->tcvregs;
692  int restart_timer = 0;
693 
694  spin_lock_irq(&hp->happy_lock);
695 
696  hp->timer_ticks++;
697  switch(hp->timer_state) {
698  case arbwait:
699  /* Only allow for 5 ticks, thats 10 seconds and much too
700  * long to wait for arbitration to complete.
701  */
702  if (hp->timer_ticks >= 10) {
703  /* Enter force mode. */
704  do_force_mode:
705  hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
706  printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
707  hp->dev->name);
708  hp->sw_bmcr = BMCR_SPEED100;
709  happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
710 
711  if (!is_lucent_phy(hp)) {
712  /* OK, seems we need do disable the transceiver for the first
713  * tick to make sure we get an accurate link state at the
714  * second tick.
715  */
716  hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
717  hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
718  happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
719  }
720  hp->timer_state = ltrywait;
721  hp->timer_ticks = 0;
722  restart_timer = 1;
723  } else {
724  /* Anything interesting happen? */
725  hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
726  if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
727  int ret;
728 
729  /* Just what we've been waiting for... */
730  ret = set_happy_link_modes(hp, tregs);
731  if (ret) {
732  /* Ooops, something bad happened, go to force
733  * mode.
734  *
735  * XXX Broken hubs which don't support 802.3u
736  * XXX auto-negotiation make this happen as well.
737  */
738  goto do_force_mode;
739  }
740 
741  /* Success, at least so far, advance our state engine. */
742  hp->timer_state = lupwait;
743  restart_timer = 1;
744  } else {
745  restart_timer = 1;
746  }
747  }
748  break;
749 
750  case lupwait:
751  /* Auto negotiation was successful and we are awaiting a
752  * link up status. I have decided to let this timer run
753  * forever until some sort of error is signalled, reporting
754  * a message to the user at 10 second intervals.
755  */
756  hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
757  if (hp->sw_bmsr & BMSR_LSTATUS) {
758  /* Wheee, it's up, display the link mode in use and put
759  * the timer to sleep.
760  */
761  display_link_mode(hp, tregs);
762  hp->timer_state = asleep;
763  restart_timer = 0;
764  } else {
765  if (hp->timer_ticks >= 10) {
766  printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
767  "not completely up.\n", hp->dev->name);
768  hp->timer_ticks = 0;
769  restart_timer = 1;
770  } else {
771  restart_timer = 1;
772  }
773  }
774  break;
775 
776  case ltrywait:
777  /* Making the timeout here too long can make it take
778  * annoyingly long to attempt all of the link mode
779  * permutations, but then again this is essentially
780  * error recovery code for the most part.
781  */
782  hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
783  hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
784  if (hp->timer_ticks == 1) {
785  if (!is_lucent_phy(hp)) {
786  /* Re-enable transceiver, we'll re-enable the transceiver next
787  * tick, then check link state on the following tick.
788  */
790  happy_meal_tcvr_write(hp, tregs,
792  }
793  restart_timer = 1;
794  break;
795  }
796  if (hp->timer_ticks == 2) {
797  if (!is_lucent_phy(hp)) {
798  hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
799  happy_meal_tcvr_write(hp, tregs,
801  }
802  restart_timer = 1;
803  break;
804  }
805  if (hp->sw_bmsr & BMSR_LSTATUS) {
806  /* Force mode selection success. */
807  display_forced_link_mode(hp, tregs);
808  set_happy_link_modes(hp, tregs); /* XXX error? then what? */
809  hp->timer_state = asleep;
810  restart_timer = 0;
811  } else {
812  if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
813  int ret;
814 
815  ret = try_next_permutation(hp, tregs);
816  if (ret == -1) {
817  /* Aieee, tried them all, reset the
818  * chip and try all over again.
819  */
820 
821  /* Let the user know... */
822  printk(KERN_NOTICE "%s: Link down, cable problem?\n",
823  hp->dev->name);
824 
825  ret = happy_meal_init(hp);
826  if (ret) {
827  /* ho hum... */
828  printk(KERN_ERR "%s: Error, cannot re-init the "
829  "Happy Meal.\n", hp->dev->name);
830  }
831  goto out;
832  }
833  if (!is_lucent_phy(hp)) {
834  hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
837  happy_meal_tcvr_write(hp, tregs,
839  }
840  hp->timer_ticks = 0;
841  restart_timer = 1;
842  } else {
843  restart_timer = 1;
844  }
845  }
846  break;
847 
848  case asleep:
849  default:
850  /* Can't happens.... */
851  printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
852  hp->dev->name);
853  restart_timer = 0;
854  hp->timer_ticks = 0;
855  hp->timer_state = asleep; /* foo on you */
856  break;
857  }
858 
859  if (restart_timer) {
860  hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
861  add_timer(&hp->happy_timer);
862  }
863 
864 out:
865  spin_unlock_irq(&hp->happy_lock);
866 }
867 
868 #define TX_RESET_TRIES 32
869 #define RX_RESET_TRIES 32
870 
871 /* hp->happy_lock must be held */
872 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
873 {
874  int tries = TX_RESET_TRIES;
875 
876  HMD(("happy_meal_tx_reset: reset, "));
877 
878  /* Would you like to try our SMCC Delux? */
879  hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
880  while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
881  udelay(20);
882 
883  /* Lettuce, tomato, buggy hardware (no extra charge)? */
884  if (!tries)
885  printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
886 
887  /* Take care. */
888  HMD(("done\n"));
889 }
890 
891 /* hp->happy_lock must be held */
892 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
893 {
894  int tries = RX_RESET_TRIES;
895 
896  HMD(("happy_meal_rx_reset: reset, "));
897 
898  /* We have a special on GNU/Viking hardware bugs today. */
899  hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
900  while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
901  udelay(20);
902 
903  /* Will that be all? */
904  if (!tries)
905  printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
906 
907  /* Don't forget your vik_1137125_wa. Have a nice day. */
908  HMD(("done\n"));
909 }
910 
911 #define STOP_TRIES 16
912 
913 /* hp->happy_lock must be held */
914 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
915 {
916  int tries = STOP_TRIES;
917 
918  HMD(("happy_meal_stop: reset, "));
919 
920  /* We're consolidating our STB products, it's your lucky day. */
922  while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
923  udelay(20);
924 
925  /* Come back next week when we are "Sun Microelectronics". */
926  if (!tries)
927  printk(KERN_ERR "happy meal: Fry guys.");
928 
929  /* Remember: "Different name, same old buggy as shit hardware." */
930  HMD(("done\n"));
931 }
932 
933 /* hp->happy_lock must be held */
934 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
935 {
936  struct net_device_stats *stats = &hp->net_stats;
937 
938  stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
939  hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
940 
941  stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
942  hme_write32(hp, bregs + BMAC_UNALECTR, 0);
943 
944  stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
945  hme_write32(hp, bregs + BMAC_GLECTR, 0);
946 
947  stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
948 
949  stats->collisions +=
950  (hme_read32(hp, bregs + BMAC_EXCTR) +
951  hme_read32(hp, bregs + BMAC_LTCTR));
952  hme_write32(hp, bregs + BMAC_EXCTR, 0);
953  hme_write32(hp, bregs + BMAC_LTCTR, 0);
954 }
955 
956 /* hp->happy_lock must be held */
957 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
958 {
959  ASD(("happy_meal_poll_stop: "));
960 
961  /* If polling disabled or not polling already, nothing to do. */
962  if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
964  HMD(("not polling, return\n"));
965  return;
966  }
967 
968  /* Shut up the MIF. */
969  ASD(("were polling, mif ints off, "));
970  hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
971 
972  /* Turn off polling. */
973  ASD(("polling off, "));
974  hme_write32(hp, tregs + TCVR_CFG,
975  hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
976 
977  /* We are no longer polling. */
978  hp->happy_flags &= ~(HFLAG_POLL);
979 
980  /* Let the bits set. */
981  udelay(200);
982  ASD(("done\n"));
983 }
984 
985 /* Only Sun can take such nice parts and fuck up the programming interface
986  * like this. Good job guys...
987  */
988 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
989 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
990 
991 /* hp->happy_lock must be held */
992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
993 {
994  u32 tconfig;
995  int result, tries = TCVR_RESET_TRIES;
996 
997  tconfig = hme_read32(hp, tregs + TCVR_CFG);
998  ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
999  if (hp->tcvr_type == external) {
1000  ASD(("external<"));
1001  hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002  hp->tcvr_type = internal;
1003  hp->paddr = TCV_PADDR_ITX;
1004  ASD(("ISOLATE,"));
1005  happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1007  result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008  if (result == TCVR_FAILURE) {
1009  ASD(("phyread_fail>\n"));
1010  return -1;
1011  }
1012  ASD(("phyread_ok,PSELECT>"));
1013  hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014  hp->tcvr_type = external;
1015  hp->paddr = TCV_PADDR_ETX;
1016  } else {
1017  if (tconfig & TCV_CFG_MDIO1) {
1018  ASD(("internal<PSELECT,"));
1019  hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1020  ASD(("ISOLATE,"));
1021  happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023  result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024  if (result == TCVR_FAILURE) {
1025  ASD(("phyread_fail>\n"));
1026  return -1;
1027  }
1028  ASD(("phyread_ok,~PSELECT>"));
1029  hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030  hp->tcvr_type = internal;
1031  hp->paddr = TCV_PADDR_ITX;
1032  }
1033  }
1034 
1035  ASD(("BMCR_RESET "));
1036  happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1037 
1038  while (--tries) {
1039  result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040  if (result == TCVR_FAILURE)
1041  return -1;
1042  hp->sw_bmcr = result;
1043  if (!(result & BMCR_RESET))
1044  break;
1045  udelay(20);
1046  }
1047  if (!tries) {
1048  ASD(("BMCR RESET FAILED!\n"));
1049  return -1;
1050  }
1051  ASD(("RESET_OK\n"));
1052 
1053  /* Get fresh copies of the PHY registers. */
1054  hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055  hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056  hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057  hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1058 
1059  ASD(("UNISOLATE"));
1060  hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061  happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1062 
1063  tries = TCVR_UNISOLATE_TRIES;
1064  while (--tries) {
1065  result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066  if (result == TCVR_FAILURE)
1067  return -1;
1068  if (!(result & BMCR_ISOLATE))
1069  break;
1070  udelay(20);
1071  }
1072  if (!tries) {
1073  ASD((" FAILED!\n"));
1074  return -1;
1075  }
1076  ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077  if (!is_lucent_phy(hp)) {
1078  result = happy_meal_tcvr_read(hp, tregs,
1080  happy_meal_tcvr_write(hp, tregs,
1081  DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1082  }
1083  return 0;
1084 }
1085 
1086 /* Figure out whether we have an internal or external transceiver.
1087  *
1088  * hp->happy_lock must be held
1089  */
1090 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1091 {
1092  unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1093 
1094  ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095  if (hp->happy_flags & HFLAG_POLL) {
1096  /* If we are polling, we must stop to get the transceiver type. */
1097  ASD(("<polling> "));
1098  if (hp->tcvr_type == internal) {
1099  if (tconfig & TCV_CFG_MDIO1) {
1100  ASD(("<internal> <poll stop> "));
1101  happy_meal_poll_stop(hp, tregs);
1102  hp->paddr = TCV_PADDR_ETX;
1103  hp->tcvr_type = external;
1104  ASD(("<external>\n"));
1105  tconfig &= ~(TCV_CFG_PENABLE);
1106  tconfig |= TCV_CFG_PSELECT;
1107  hme_write32(hp, tregs + TCVR_CFG, tconfig);
1108  }
1109  } else {
1110  if (hp->tcvr_type == external) {
1111  ASD(("<external> "));
1112  if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113  ASD(("<poll stop> "));
1114  happy_meal_poll_stop(hp, tregs);
1115  hp->paddr = TCV_PADDR_ITX;
1116  hp->tcvr_type = internal;
1117  ASD(("<internal>\n"));
1118  hme_write32(hp, tregs + TCVR_CFG,
1119  hme_read32(hp, tregs + TCVR_CFG) &
1120  ~(TCV_CFG_PSELECT));
1121  }
1122  ASD(("\n"));
1123  } else {
1124  ASD(("<none>\n"));
1125  }
1126  }
1127  } else {
1128  u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1129 
1130  /* Else we can just work off of the MDIO bits. */
1131  ASD(("<not polling> "));
1132  if (reread & TCV_CFG_MDIO1) {
1133  hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134  hp->paddr = TCV_PADDR_ETX;
1135  hp->tcvr_type = external;
1136  ASD(("<external>\n"));
1137  } else {
1138  if (reread & TCV_CFG_MDIO0) {
1139  hme_write32(hp, tregs + TCVR_CFG,
1140  tconfig & ~(TCV_CFG_PSELECT));
1141  hp->paddr = TCV_PADDR_ITX;
1142  hp->tcvr_type = internal;
1143  ASD(("<internal>\n"));
1144  } else {
1145  printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146  hp->tcvr_type = none; /* Grrr... */
1147  ASD(("<none>\n"));
1148  }
1149  }
1150  }
1151 }
1152 
1153 /* The receive ring buffers are a bit tricky to get right. Here goes...
1154  *
1155  * The buffers we dma into must be 64 byte aligned. So we use a special
1156  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1157  * we really need.
1158  *
1159  * We use skb_reserve() to align the data block we get in the skb. We
1160  * also program the etxregs->cfg register to use an offset of 2. This
1161  * imperical constant plus the ethernet header size will always leave
1162  * us with a nicely aligned ip header once we pass things up to the
1163  * protocol layers.
1164  *
1165  * The numbers work out to:
1166  *
1167  * Max ethernet frame size 1518
1168  * Ethernet header size 14
1169  * Happy Meal base offset 2
1170  *
1171  * Say a skb data area is at 0xf001b010, and its size alloced is
1172  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1173  *
1174  * First our alloc_skb() routine aligns the data base to a 64 byte
1175  * boundary. We now have 0xf001b040 as our skb data address. We
1176  * plug this into the receive descriptor address.
1177  *
1178  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179  * So now the data we will end up looking at starts at 0xf001b042. When
1180  * the packet arrives, we will check out the size received and subtract
1181  * this from the skb->length. Then we just pass the packet up to the
1182  * protocols as is, and allocate a new skb to replace this slot we have
1183  * just received from.
1184  *
1185  * The ethernet layer will strip the ether header from the front of the
1186  * skb we just sent to it, this leaves us with the ip header sitting
1187  * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1188  * Happy Meal has even checksummed the tcp/udp data for us. The 16
1189  * bit checksum is obtained from the low bits of the receive descriptor
1190  * flags, thus:
1191  *
1192  * skb->csum = rxd->rx_flags & 0xffff;
1193  * skb->ip_summed = CHECKSUM_COMPLETE;
1194  *
1195  * before sending off the skb to the protocols, and we are good as gold.
1196  */
1197 static void happy_meal_clean_rings(struct happy_meal *hp)
1198 {
1199  int i;
1200 
1201  for (i = 0; i < RX_RING_SIZE; i++) {
1202  if (hp->rx_skbs[i] != NULL) {
1203  struct sk_buff *skb = hp->rx_skbs[i];
1204  struct happy_meal_rxd *rxd;
1205  u32 dma_addr;
1206 
1207  rxd = &hp->happy_block->happy_meal_rxd[i];
1208  dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209  dma_unmap_single(hp->dma_dev, dma_addr,
1211  dev_kfree_skb_any(skb);
1212  hp->rx_skbs[i] = NULL;
1213  }
1214  }
1215 
1216  for (i = 0; i < TX_RING_SIZE; i++) {
1217  if (hp->tx_skbs[i] != NULL) {
1218  struct sk_buff *skb = hp->tx_skbs[i];
1219  struct happy_meal_txd *txd;
1220  u32 dma_addr;
1221  int frag;
1222 
1223  hp->tx_skbs[i] = NULL;
1224 
1225  for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1226  txd = &hp->happy_block->happy_meal_txd[i];
1227  dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1228  if (!frag)
1229  dma_unmap_single(hp->dma_dev, dma_addr,
1230  (hme_read_desc32(hp, &txd->tx_flags)
1231  & TXFLAG_SIZE),
1232  DMA_TO_DEVICE);
1233  else
1234  dma_unmap_page(hp->dma_dev, dma_addr,
1235  (hme_read_desc32(hp, &txd->tx_flags)
1236  & TXFLAG_SIZE),
1237  DMA_TO_DEVICE);
1238 
1239  if (frag != skb_shinfo(skb)->nr_frags)
1240  i++;
1241  }
1242 
1243  dev_kfree_skb_any(skb);
1244  }
1245  }
1246 }
1247 
1248 /* hp->happy_lock must be held */
1249 static void happy_meal_init_rings(struct happy_meal *hp)
1250 {
1251  struct hmeal_init_block *hb = hp->happy_block;
1252  int i;
1253 
1254  HMD(("happy_meal_init_rings: counters to zero, "));
1255  hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1256 
1257  /* Free any skippy bufs left around in the rings. */
1258  HMD(("clean, "));
1259  happy_meal_clean_rings(hp);
1260 
1261  /* Now get new skippy bufs for the receive ring. */
1262  HMD(("init rxring, "));
1263  for (i = 0; i < RX_RING_SIZE; i++) {
1264  struct sk_buff *skb;
1265 
1267  if (!skb) {
1268  hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1269  continue;
1270  }
1271  hp->rx_skbs[i] = skb;
1272 
1273  /* Because we reserve afterwards. */
1274  skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1275  hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1276  (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1278  DMA_FROM_DEVICE));
1279  skb_reserve(skb, RX_OFFSET);
1280  }
1281 
1282  HMD(("init txring, "));
1283  for (i = 0; i < TX_RING_SIZE; i++)
1284  hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1285 
1286  HMD(("done\n"));
1287 }
1288 
1289 /* hp->happy_lock must be held */
1290 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1291  void __iomem *tregs,
1292  struct ethtool_cmd *ep)
1293 {
1294  int timeout;
1295 
1296  /* Read all of the registers we are interested in now. */
1297  hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1298  hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1299  hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1300  hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1301 
1302  /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1303 
1304  hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1305  if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1306  /* Advertise everything we can support. */
1307  if (hp->sw_bmsr & BMSR_10HALF)
1308  hp->sw_advertise |= (ADVERTISE_10HALF);
1309  else
1310  hp->sw_advertise &= ~(ADVERTISE_10HALF);
1311 
1312  if (hp->sw_bmsr & BMSR_10FULL)
1313  hp->sw_advertise |= (ADVERTISE_10FULL);
1314  else
1315  hp->sw_advertise &= ~(ADVERTISE_10FULL);
1316  if (hp->sw_bmsr & BMSR_100HALF)
1318  else
1319  hp->sw_advertise &= ~(ADVERTISE_100HALF);
1320  if (hp->sw_bmsr & BMSR_100FULL)
1322  else
1323  hp->sw_advertise &= ~(ADVERTISE_100FULL);
1324  happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1325 
1326  /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1327  * XXX and this is because the DP83840 does not support it, changes
1328  * XXX would need to be made to the tx/rx logic in the driver as well
1329  * XXX so I completely skip checking for it in the BMSR for now.
1330  */
1331 
1332 #ifdef AUTO_SWITCH_DEBUG
1333  ASD(("%s: Advertising [ ", hp->dev->name));
1334  if (hp->sw_advertise & ADVERTISE_10HALF)
1335  ASD(("10H "));
1336  if (hp->sw_advertise & ADVERTISE_10FULL)
1337  ASD(("10F "));
1338  if (hp->sw_advertise & ADVERTISE_100HALF)
1339  ASD(("100H "));
1340  if (hp->sw_advertise & ADVERTISE_100FULL)
1341  ASD(("100F "));
1342 #endif
1343 
1344  /* Enable Auto-Negotiation, this is usually on already... */
1345  hp->sw_bmcr |= BMCR_ANENABLE;
1346  happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1347 
1348  /* Restart it to make sure it is going. */
1349  hp->sw_bmcr |= BMCR_ANRESTART;
1350  happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1351 
1352  /* BMCR_ANRESTART self clears when the process has begun. */
1353 
1354  timeout = 64; /* More than enough. */
1355  while (--timeout) {
1356  hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1357  if (!(hp->sw_bmcr & BMCR_ANRESTART))
1358  break; /* got it. */
1359  udelay(10);
1360  }
1361  if (!timeout) {
1362  printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1363  "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1364  printk(KERN_NOTICE "%s: Performing force link detection.\n",
1365  hp->dev->name);
1366  goto force_link;
1367  } else {
1368  hp->timer_state = arbwait;
1369  }
1370  } else {
1371 force_link:
1372  /* Force the link up, trying first a particular mode.
1373  * Either we are here at the request of ethtool or
1374  * because the Happy Meal would not start to autoneg.
1375  */
1376 
1377  /* Disable auto-negotiation in BMCR, enable the duplex and
1378  * speed setting, init the timer state machine, and fire it off.
1379  */
1380  if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1381  hp->sw_bmcr = BMCR_SPEED100;
1382  } else {
1383  if (ethtool_cmd_speed(ep) == SPEED_100)
1384  hp->sw_bmcr = BMCR_SPEED100;
1385  else
1386  hp->sw_bmcr = 0;
1387  if (ep->duplex == DUPLEX_FULL)
1388  hp->sw_bmcr |= BMCR_FULLDPLX;
1389  }
1390  happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1391 
1392  if (!is_lucent_phy(hp)) {
1393  /* OK, seems we need do disable the transceiver for the first
1394  * tick to make sure we get an accurate link state at the
1395  * second tick.
1396  */
1397  hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1399  hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1400  happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1401  hp->sw_csconfig);
1402  }
1403  hp->timer_state = ltrywait;
1404  }
1405 
1406  hp->timer_ticks = 0;
1407  hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1408  hp->happy_timer.data = (unsigned long) hp;
1409  hp->happy_timer.function = happy_meal_timer;
1410  add_timer(&hp->happy_timer);
1411 }
1412 
1413 /* hp->happy_lock must be held */
1414 static int happy_meal_init(struct happy_meal *hp)
1415 {
1416  void __iomem *gregs = hp->gregs;
1417  void __iomem *etxregs = hp->etxregs;
1418  void __iomem *erxregs = hp->erxregs;
1419  void __iomem *bregs = hp->bigmacregs;
1420  void __iomem *tregs = hp->tcvregs;
1421  u32 regtmp, rxcfg;
1422  unsigned char *e = &hp->dev->dev_addr[0];
1423 
1424  /* If auto-negotiation timer is running, kill it. */
1425  del_timer(&hp->happy_timer);
1426 
1427  HMD(("happy_meal_init: happy_flags[%08x] ",
1428  hp->happy_flags));
1429  if (!(hp->happy_flags & HFLAG_INIT)) {
1430  HMD(("set HFLAG_INIT, "));
1431  hp->happy_flags |= HFLAG_INIT;
1432  happy_meal_get_counters(hp, bregs);
1433  }
1434 
1435  /* Stop polling. */
1436  HMD(("to happy_meal_poll_stop\n"));
1437  happy_meal_poll_stop(hp, tregs);
1438 
1439  /* Stop transmitter and receiver. */
1440  HMD(("happy_meal_init: to happy_meal_stop\n"));
1441  happy_meal_stop(hp, gregs);
1442 
1443  /* Alloc and reset the tx/rx descriptor chains. */
1444  HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1445  happy_meal_init_rings(hp);
1446 
1447  /* Shut up the MIF. */
1448  HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1449  hme_read32(hp, tregs + TCVR_IMASK)));
1450  hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1451 
1452  /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1453  if (hp->happy_flags & HFLAG_FENABLE) {
1454  HMD(("use frame old[%08x], ",
1455  hme_read32(hp, tregs + TCVR_CFG)));
1456  hme_write32(hp, tregs + TCVR_CFG,
1457  hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1458  } else {
1459  HMD(("use bitbang old[%08x], ",
1460  hme_read32(hp, tregs + TCVR_CFG)));
1461  hme_write32(hp, tregs + TCVR_CFG,
1462  hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1463  }
1464 
1465  /* Check the state of the transceiver. */
1466  HMD(("to happy_meal_transceiver_check\n"));
1467  happy_meal_transceiver_check(hp, tregs);
1468 
1469  /* Put the Big Mac into a sane state. */
1470  HMD(("happy_meal_init: "));
1471  switch(hp->tcvr_type) {
1472  case none:
1473  /* Cannot operate if we don't know the transceiver type! */
1474  HMD(("AAIEEE no transceiver type, EAGAIN"));
1475  return -EAGAIN;
1476 
1477  case internal:
1478  /* Using the MII buffers. */
1479  HMD(("internal, using MII, "));
1480  hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1481  break;
1482 
1483  case external:
1484  /* Not using the MII, disable it. */
1485  HMD(("external, disable MII, "));
1487  break;
1488  }
1489 
1490  if (happy_meal_tcvr_reset(hp, tregs))
1491  return -EAGAIN;
1492 
1493  /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1494  HMD(("tx/rx reset, "));
1495  happy_meal_tx_reset(hp, bregs);
1496  happy_meal_rx_reset(hp, bregs);
1497 
1498  /* Set jam size and inter-packet gaps to reasonable defaults. */
1499  HMD(("jsize/ipg1/ipg2, "));
1500  hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1501  hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1502  hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1503 
1504  /* Load up the MAC address and random seed. */
1505  HMD(("rseed/macaddr, "));
1506 
1507  /* The docs recommend to use the 10LSB of our MAC here. */
1508  hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1509 
1510  hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1511  hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1512  hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1513 
1514  HMD(("htable, "));
1515  if ((hp->dev->flags & IFF_ALLMULTI) ||
1516  (netdev_mc_count(hp->dev) > 64)) {
1517  hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1518  hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1519  hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1520  hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1521  } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1522  u16 hash_table[4];
1523  struct netdev_hw_addr *ha;
1524  u32 crc;
1525 
1526  memset(hash_table, 0, sizeof(hash_table));
1527  netdev_for_each_mc_addr(ha, hp->dev) {
1528  crc = ether_crc_le(6, ha->addr);
1529  crc >>= 26;
1530  hash_table[crc >> 4] |= 1 << (crc & 0xf);
1531  }
1532  hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1533  hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1534  hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1535  hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1536  } else {
1537  hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1538  hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1539  hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1540  hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1541  }
1542 
1543  /* Set the RX and TX ring ptrs. */
1544  HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1547  hme_write32(hp, erxregs + ERX_RING,
1549  hme_write32(hp, etxregs + ETX_RING,
1551 
1552  /* Parity issues in the ERX unit of some HME revisions can cause some
1553  * registers to not be written unless their parity is even. Detect such
1554  * lost writes and simply rewrite with a low bit set (which will be ignored
1555  * since the rxring needs to be 2K aligned).
1556  */
1557  if (hme_read32(hp, erxregs + ERX_RING) !=
1559  hme_write32(hp, erxregs + ERX_RING,
1561  | 0x4);
1562 
1563  /* Set the supported burst sizes. */
1564  HMD(("happy_meal_init: old[%08x] bursts<",
1565  hme_read32(hp, gregs + GREG_CFG)));
1566 
1567 #ifndef CONFIG_SPARC
1568  /* It is always PCI and can handle 64byte bursts. */
1569  hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1570 #else
1571  if ((hp->happy_bursts & DMA_BURST64) &&
1572  ((hp->happy_flags & HFLAG_PCI) != 0
1573 #ifdef CONFIG_SBUS
1574  || sbus_can_burst64()
1575 #endif
1576  || 0)) {
1577  u32 gcfg = GREG_CFG_BURST64;
1578 
1579  /* I have no idea if I should set the extended
1580  * transfer mode bit for Cheerio, so for now I
1581  * do not. -DaveM
1582  */
1583 #ifdef CONFIG_SBUS
1584  if ((hp->happy_flags & HFLAG_PCI) == 0) {
1585  struct platform_device *op = hp->happy_dev;
1586  if (sbus_can_dma_64bit()) {
1587  sbus_set_sbus64(&op->dev,
1588  hp->happy_bursts);
1589  gcfg |= GREG_CFG_64BIT;
1590  }
1591  }
1592 #endif
1593 
1594  HMD(("64>"));
1595  hme_write32(hp, gregs + GREG_CFG, gcfg);
1596  } else if (hp->happy_bursts & DMA_BURST32) {
1597  HMD(("32>"));
1598  hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1599  } else if (hp->happy_bursts & DMA_BURST16) {
1600  HMD(("16>"));
1601  hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1602  } else {
1603  HMD(("XXX>"));
1604  hme_write32(hp, gregs + GREG_CFG, 0);
1605  }
1606 #endif /* CONFIG_SPARC */
1607 
1608  /* Turn off interrupts we do not want to hear. */
1609  HMD((", enable global interrupts, "));
1610  hme_write32(hp, gregs + GREG_IMASK,
1613 
1614  /* Set the transmit ring buffer size. */
1615  HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1616  hme_read32(hp, etxregs + ETX_RSIZE)));
1617  hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1618 
1619  /* Enable transmitter DVMA. */
1620  HMD(("tx dma enable old[%08x], ",
1621  hme_read32(hp, etxregs + ETX_CFG)));
1622  hme_write32(hp, etxregs + ETX_CFG,
1623  hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1624 
1625  /* This chip really rots, for the receiver sometimes when you
1626  * write to its control registers not all the bits get there
1627  * properly. I cannot think of a sane way to provide complete
1628  * coverage for this hardware bug yet.
1629  */
1630  HMD(("erx regs bug old[%08x]\n",
1631  hme_read32(hp, erxregs + ERX_CFG)));
1632  hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1633  regtmp = hme_read32(hp, erxregs + ERX_CFG);
1634  hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1635  if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1636  printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1637  printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1638  ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1639  /* XXX Should return failure here... */
1640  }
1641 
1642  /* Enable Big Mac hash table filter. */
1643  HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1644  hme_read32(hp, bregs + BMAC_RXCFG)));
1646  if (hp->dev->flags & IFF_PROMISC)
1647  rxcfg |= BIGMAC_RXCFG_PMISC;
1648  hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1649 
1650  /* Let the bits settle in the chip. */
1651  udelay(10);
1652 
1653  /* Ok, configure the Big Mac transmitter. */
1654  HMD(("BIGMAC init, "));
1655  regtmp = 0;
1656  if (hp->happy_flags & HFLAG_FULL)
1657  regtmp |= BIGMAC_TXCFG_FULLDPLX;
1658 
1659  /* Don't turn on the "don't give up" bit for now. It could cause hme
1660  * to deadlock with the PHY if a Jabber occurs.
1661  */
1662  hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1663 
1664  /* Give up after 16 TX attempts. */
1665  hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1666 
1667  /* Enable the output drivers no matter what. */
1668  regtmp = BIGMAC_XCFG_ODENABLE;
1669 
1670  /* If card can do lance mode, enable it. */
1671  if (hp->happy_flags & HFLAG_LANCE)
1672  regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1673 
1674  /* Disable the MII buffers if using external transceiver. */
1675  if (hp->tcvr_type == external)
1676  regtmp |= BIGMAC_XCFG_MIIDISAB;
1677 
1678  HMD(("XIF config old[%08x], ",
1679  hme_read32(hp, bregs + BMAC_XIFCFG)));
1680  hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1681 
1682  /* Start things up. */
1683  HMD(("tx old[%08x] and rx [%08x] ON!\n",
1684  hme_read32(hp, bregs + BMAC_TXCFG),
1685  hme_read32(hp, bregs + BMAC_RXCFG)));
1686 
1687  /* Set larger TX/RX size to allow for 802.1q */
1688  hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1689  hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1690 
1691  hme_write32(hp, bregs + BMAC_TXCFG,
1692  hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1693  hme_write32(hp, bregs + BMAC_RXCFG,
1694  hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1695 
1696  /* Get the autonegotiation started, and the watch timer ticking. */
1697  happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1698 
1699  /* Success. */
1700  return 0;
1701 }
1702 
1703 /* hp->happy_lock must be held */
1704 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1705 {
1706  void __iomem *tregs = hp->tcvregs;
1707  void __iomem *bregs = hp->bigmacregs;
1708  void __iomem *gregs = hp->gregs;
1709 
1710  happy_meal_stop(hp, gregs);
1711  hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1712  if (hp->happy_flags & HFLAG_FENABLE)
1713  hme_write32(hp, tregs + TCVR_CFG,
1714  hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1715  else
1716  hme_write32(hp, tregs + TCVR_CFG,
1717  hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1718  happy_meal_transceiver_check(hp, tregs);
1719  switch(hp->tcvr_type) {
1720  case none:
1721  return;
1722  case internal:
1723  hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1724  break;
1725  case external:
1727  break;
1728  }
1729  if (happy_meal_tcvr_reset(hp, tregs))
1730  return;
1731 
1732  /* Latch PHY registers as of now. */
1733  hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1734  hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1735 
1736  /* Advertise everything we can support. */
1737  if (hp->sw_bmsr & BMSR_10HALF)
1738  hp->sw_advertise |= (ADVERTISE_10HALF);
1739  else
1740  hp->sw_advertise &= ~(ADVERTISE_10HALF);
1741 
1742  if (hp->sw_bmsr & BMSR_10FULL)
1743  hp->sw_advertise |= (ADVERTISE_10FULL);
1744  else
1745  hp->sw_advertise &= ~(ADVERTISE_10FULL);
1746  if (hp->sw_bmsr & BMSR_100HALF)
1748  else
1749  hp->sw_advertise &= ~(ADVERTISE_100HALF);
1750  if (hp->sw_bmsr & BMSR_100FULL)
1752  else
1753  hp->sw_advertise &= ~(ADVERTISE_100FULL);
1754 
1755  /* Update the PHY advertisement register. */
1756  happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1757 }
1758 
1759 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1760  * the hardware, so we cannot re-read it and get a correct value.
1761  *
1762  * hp->happy_lock must be held
1763  */
1764 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1765 {
1766  int reset = 0;
1767 
1768  /* Only print messages for non-counter related interrupts. */
1769  if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1775  printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1776  hp->dev->name, status);
1777 
1778  if (status & GREG_STAT_RFIFOVF) {
1779  /* Receive FIFO overflow is harmless and the hardware will take
1780  care of it, just some packets are lost. Who cares. */
1781  printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1782  }
1783 
1784  if (status & GREG_STAT_STSTERR) {
1785  /* BigMAC SQE link test failed. */
1786  printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1787  reset = 1;
1788  }
1789 
1790  if (status & GREG_STAT_TFIFO_UND) {
1791  /* Transmit FIFO underrun, again DMA error likely. */
1792  printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1793  hp->dev->name);
1794  reset = 1;
1795  }
1796 
1797  if (status & GREG_STAT_MAXPKTERR) {
1798  /* Driver error, tried to transmit something larger
1799  * than ethernet max mtu.
1800  */
1801  printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1802  reset = 1;
1803  }
1804 
1805  if (status & GREG_STAT_NORXD) {
1806  /* This is harmless, it just means the system is
1807  * quite loaded and the incoming packet rate was
1808  * faster than the interrupt handler could keep up
1809  * with.
1810  */
1811  printk(KERN_INFO "%s: Happy Meal out of receive "
1812  "descriptors, packet dropped.\n",
1813  hp->dev->name);
1814  }
1815 
1817  /* All sorts of DMA receive errors. */
1818  printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1819  if (status & GREG_STAT_RXERR)
1820  printk("GenericError ");
1821  if (status & GREG_STAT_RXPERR)
1822  printk("ParityError ");
1823  if (status & GREG_STAT_RXTERR)
1824  printk("RxTagBotch ");
1825  printk("]\n");
1826  reset = 1;
1827  }
1828 
1829  if (status & GREG_STAT_EOPERR) {
1830  /* Driver bug, didn't set EOP bit in tx descriptor given
1831  * to the happy meal.
1832  */
1833  printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1834  hp->dev->name);
1835  reset = 1;
1836  }
1837 
1838  if (status & GREG_STAT_MIFIRQ) {
1839  /* MIF signalled an interrupt, were we polling it? */
1840  printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1841  }
1842 
1843  if (status &
1845  /* All sorts of transmit DMA errors. */
1846  printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1847  if (status & GREG_STAT_TXEACK)
1848  printk("GenericError ");
1849  if (status & GREG_STAT_TXLERR)
1850  printk("LateError ");
1851  if (status & GREG_STAT_TXPERR)
1852  printk("ParityErro ");
1853  if (status & GREG_STAT_TXTERR)
1854  printk("TagBotch ");
1855  printk("]\n");
1856  reset = 1;
1857  }
1858 
1859  if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1860  /* Bus or parity error when cpu accessed happy meal registers
1861  * or it's internal FIFO's. Should never see this.
1862  */
1863  printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1864  hp->dev->name,
1865  (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1866  reset = 1;
1867  }
1868 
1869  if (reset) {
1870  printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1871  happy_meal_init(hp);
1872  return 1;
1873  }
1874  return 0;
1875 }
1876 
1877 /* hp->happy_lock must be held */
1878 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1879 {
1880  void __iomem *tregs = hp->tcvregs;
1881 
1882  printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1883  hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1884  hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1885 
1886  /* Use the fastest transmission protocol possible. */
1887  if (hp->sw_lpa & LPA_100FULL) {
1888  printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1889  hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1890  } else if (hp->sw_lpa & LPA_100HALF) {
1891  printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1892  hp->sw_bmcr |= BMCR_SPEED100;
1893  } else if (hp->sw_lpa & LPA_10FULL) {
1894  printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1895  hp->sw_bmcr |= BMCR_FULLDPLX;
1896  } else {
1897  printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1898  }
1899  happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1900 
1901  /* Finally stop polling and shut up the MIF. */
1902  happy_meal_poll_stop(hp, tregs);
1903 }
1904 
1905 #ifdef TXDEBUG
1906 #define TXD(x) printk x
1907 #else
1908 #define TXD(x)
1909 #endif
1910 
1911 /* hp->happy_lock must be held */
1912 static void happy_meal_tx(struct happy_meal *hp)
1913 {
1914  struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1915  struct happy_meal_txd *this;
1916  struct net_device *dev = hp->dev;
1917  int elem;
1918 
1919  elem = hp->tx_old;
1920  TXD(("TX<"));
1921  while (elem != hp->tx_new) {
1922  struct sk_buff *skb;
1923  u32 flags, dma_addr, dma_len;
1924  int frag;
1925 
1926  TXD(("[%d]", elem));
1927  this = &txbase[elem];
1928  flags = hme_read_desc32(hp, &this->tx_flags);
1929  if (flags & TXFLAG_OWN)
1930  break;
1931  skb = hp->tx_skbs[elem];
1932  if (skb_shinfo(skb)->nr_frags) {
1933  int last;
1934 
1935  last = elem + skb_shinfo(skb)->nr_frags;
1936  last &= (TX_RING_SIZE - 1);
1937  flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1938  if (flags & TXFLAG_OWN)
1939  break;
1940  }
1941  hp->tx_skbs[elem] = NULL;
1942  hp->net_stats.tx_bytes += skb->len;
1943 
1944  for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1945  dma_addr = hme_read_desc32(hp, &this->tx_addr);
1946  dma_len = hme_read_desc32(hp, &this->tx_flags);
1947 
1948  dma_len &= TXFLAG_SIZE;
1949  if (!frag)
1950  dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1951  else
1952  dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1953 
1954  elem = NEXT_TX(elem);
1955  this = &txbase[elem];
1956  }
1957 
1958  dev_kfree_skb_irq(skb);
1959  hp->net_stats.tx_packets++;
1960  }
1961  hp->tx_old = elem;
1962  TXD((">"));
1963 
1964  if (netif_queue_stopped(dev) &&
1965  TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1966  netif_wake_queue(dev);
1967 }
1968 
1969 #ifdef RXDEBUG
1970 #define RXD(x) printk x
1971 #else
1972 #define RXD(x)
1973 #endif
1974 
1975 /* Originally I used to handle the allocation failure by just giving back just
1976  * that one ring buffer to the happy meal. Problem is that usually when that
1977  * condition is triggered, the happy meal expects you to do something reasonable
1978  * with all of the packets it has DMA'd in. So now I just drop the entire
1979  * ring when we cannot get a new skb and give them all back to the happy meal,
1980  * maybe things will be "happier" now.
1981  *
1982  * hp->happy_lock must be held
1983  */
1984 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1985 {
1986  struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1987  struct happy_meal_rxd *this;
1988  int elem = hp->rx_new, drops = 0;
1989  u32 flags;
1990 
1991  RXD(("RX<"));
1992  this = &rxbase[elem];
1993  while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1994  struct sk_buff *skb;
1995  int len = flags >> 16;
1996  u16 csum = flags & RXFLAG_CSUM;
1997  u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1998 
1999  RXD(("[%d ", elem));
2000 
2001  /* Check for errors. */
2002  if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2003  RXD(("ERR(%08x)]", flags));
2004  hp->net_stats.rx_errors++;
2005  if (len < ETH_ZLEN)
2006  hp->net_stats.rx_length_errors++;
2007  if (len & (RXFLAG_OVERFLOW >> 16)) {
2008  hp->net_stats.rx_over_errors++;
2009  hp->net_stats.rx_fifo_errors++;
2010  }
2011 
2012  /* Return it to the Happy meal. */
2013  drop_it:
2014  hp->net_stats.rx_dropped++;
2015  hme_write_rxd(hp, this,
2016  (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2017  dma_addr);
2018  goto next;
2019  }
2020  skb = hp->rx_skbs[elem];
2021  if (len > RX_COPY_THRESHOLD) {
2022  struct sk_buff *new_skb;
2023 
2024  /* Now refill the entry, if we can. */
2026  if (new_skb == NULL) {
2027  drops++;
2028  goto drop_it;
2029  }
2031  hp->rx_skbs[elem] = new_skb;
2032  skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2033  hme_write_rxd(hp, this,
2034  (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2036  DMA_FROM_DEVICE));
2037  skb_reserve(new_skb, RX_OFFSET);
2038 
2039  /* Trim the original skb for the netif. */
2040  skb_trim(skb, len);
2041  } else {
2042  struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2043 
2044  if (copy_skb == NULL) {
2045  drops++;
2046  goto drop_it;
2047  }
2048 
2049  skb_reserve(copy_skb, 2);
2050  skb_put(copy_skb, len);
2051  dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2052  skb_copy_from_linear_data(skb, copy_skb->data, len);
2053  dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2054  /* Reuse original ring buffer. */
2055  hme_write_rxd(hp, this,
2056  (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2057  dma_addr);
2058 
2059  skb = copy_skb;
2060  }
2061 
2062  /* This card is _fucking_ hot... */
2063  skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2065 
2066  RXD(("len=%d csum=%4x]", len, csum));
2067  skb->protocol = eth_type_trans(skb, dev);
2068  netif_rx(skb);
2069 
2070  hp->net_stats.rx_packets++;
2071  hp->net_stats.rx_bytes += len;
2072  next:
2073  elem = NEXT_RX(elem);
2074  this = &rxbase[elem];
2075  }
2076  hp->rx_new = elem;
2077  if (drops)
2078  printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2079  RXD((">"));
2080 }
2081 
2082 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2083 {
2084  struct net_device *dev = dev_id;
2085  struct happy_meal *hp = netdev_priv(dev);
2086  u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2087 
2088  HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2089 
2090  spin_lock(&hp->happy_lock);
2091 
2092  if (happy_status & GREG_STAT_ERRORS) {
2093  HMD(("ERRORS "));
2094  if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2095  goto out;
2096  }
2097 
2098  if (happy_status & GREG_STAT_MIFIRQ) {
2099  HMD(("MIFIRQ "));
2100  happy_meal_mif_interrupt(hp);
2101  }
2102 
2103  if (happy_status & GREG_STAT_TXALL) {
2104  HMD(("TXALL "));
2105  happy_meal_tx(hp);
2106  }
2107 
2108  if (happy_status & GREG_STAT_RXTOHOST) {
2109  HMD(("RXTOHOST "));
2110  happy_meal_rx(hp, dev);
2111  }
2112 
2113  HMD(("done\n"));
2114 out:
2115  spin_unlock(&hp->happy_lock);
2116 
2117  return IRQ_HANDLED;
2118 }
2119 
2120 #ifdef CONFIG_SBUS
2121 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2122 {
2123  struct quattro *qp = (struct quattro *) cookie;
2124  int i;
2125 
2126  for (i = 0; i < 4; i++) {
2127  struct net_device *dev = qp->happy_meals[i];
2128  struct happy_meal *hp = netdev_priv(dev);
2129  u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2130 
2131  HMD(("quattro_interrupt: status=%08x ", happy_status));
2132 
2133  if (!(happy_status & (GREG_STAT_ERRORS |
2134  GREG_STAT_MIFIRQ |
2135  GREG_STAT_TXALL |
2136  GREG_STAT_RXTOHOST)))
2137  continue;
2138 
2139  spin_lock(&hp->happy_lock);
2140 
2141  if (happy_status & GREG_STAT_ERRORS) {
2142  HMD(("ERRORS "));
2143  if (happy_meal_is_not_so_happy(hp, happy_status))
2144  goto next;
2145  }
2146 
2147  if (happy_status & GREG_STAT_MIFIRQ) {
2148  HMD(("MIFIRQ "));
2149  happy_meal_mif_interrupt(hp);
2150  }
2151 
2152  if (happy_status & GREG_STAT_TXALL) {
2153  HMD(("TXALL "));
2154  happy_meal_tx(hp);
2155  }
2156 
2157  if (happy_status & GREG_STAT_RXTOHOST) {
2158  HMD(("RXTOHOST "));
2159  happy_meal_rx(hp, dev);
2160  }
2161 
2162  next:
2163  spin_unlock(&hp->happy_lock);
2164  }
2165  HMD(("done\n"));
2166 
2167  return IRQ_HANDLED;
2168 }
2169 #endif
2170 
2171 static int happy_meal_open(struct net_device *dev)
2172 {
2173  struct happy_meal *hp = netdev_priv(dev);
2174  int res;
2175 
2176  HMD(("happy_meal_open: "));
2177 
2178  /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2179  * into a single source which we register handling at probe time.
2180  */
2181  if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2182  res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2183  dev->name, dev);
2184  if (res) {
2185  HMD(("EAGAIN\n"));
2186  printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2187  hp->irq);
2188 
2189  return -EAGAIN;
2190  }
2191  }
2192 
2193  HMD(("to happy_meal_init\n"));
2194 
2195  spin_lock_irq(&hp->happy_lock);
2196  res = happy_meal_init(hp);
2197  spin_unlock_irq(&hp->happy_lock);
2198 
2199  if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2200  free_irq(hp->irq, dev);
2201  return res;
2202 }
2203 
2204 static int happy_meal_close(struct net_device *dev)
2205 {
2206  struct happy_meal *hp = netdev_priv(dev);
2207 
2208  spin_lock_irq(&hp->happy_lock);
2209  happy_meal_stop(hp, hp->gregs);
2210  happy_meal_clean_rings(hp);
2211 
2212  /* If auto-negotiation timer is running, kill it. */
2213  del_timer(&hp->happy_timer);
2214 
2215  spin_unlock_irq(&hp->happy_lock);
2216 
2217  /* On Quattro QFE cards, all hme interrupts are concentrated
2218  * into a single source which we register handling at probe
2219  * time and never unregister.
2220  */
2222  free_irq(hp->irq, dev);
2223 
2224  return 0;
2225 }
2226 
2227 #ifdef SXDEBUG
2228 #define SXD(x) printk x
2229 #else
2230 #define SXD(x)
2231 #endif
2232 
2233 static void happy_meal_tx_timeout(struct net_device *dev)
2234 {
2235  struct happy_meal *hp = netdev_priv(dev);
2236 
2237  printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2238  tx_dump_log();
2239  printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2240  hme_read32(hp, hp->gregs + GREG_STAT),
2241  hme_read32(hp, hp->etxregs + ETX_CFG),
2242  hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2243 
2244  spin_lock_irq(&hp->happy_lock);
2245  happy_meal_init(hp);
2246  spin_unlock_irq(&hp->happy_lock);
2247 
2248  netif_wake_queue(dev);
2249 }
2250 
2251 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2252  struct net_device *dev)
2253 {
2254  struct happy_meal *hp = netdev_priv(dev);
2255  int entry;
2256  u32 tx_flags;
2257 
2258  tx_flags = TXFLAG_OWN;
2259  if (skb->ip_summed == CHECKSUM_PARTIAL) {
2260  const u32 csum_start_off = skb_checksum_start_offset(skb);
2261  const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2262 
2263  tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2264  ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2265  ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2266  }
2267 
2268  spin_lock_irq(&hp->happy_lock);
2269 
2270  if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2271  netif_stop_queue(dev);
2272  spin_unlock_irq(&hp->happy_lock);
2273  printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2274  dev->name);
2275  return NETDEV_TX_BUSY;
2276  }
2277 
2278  entry = hp->tx_new;
2279  SXD(("SX<l[%d]e[%d]>", len, entry));
2280  hp->tx_skbs[entry] = skb;
2281 
2282  if (skb_shinfo(skb)->nr_frags == 0) {
2283  u32 mapping, len;
2284 
2285  len = skb->len;
2286  mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2287  tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2288  hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2289  (tx_flags | (len & TXFLAG_SIZE)),
2290  mapping);
2291  entry = NEXT_TX(entry);
2292  } else {
2293  u32 first_len, first_mapping;
2294  int frag, first_entry = entry;
2295 
2296  /* We must give this initial chunk to the device last.
2297  * Otherwise we could race with the device.
2298  */
2299  first_len = skb_headlen(skb);
2300  first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2301  DMA_TO_DEVICE);
2302  entry = NEXT_TX(entry);
2303 
2304  for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2305  const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2306  u32 len, mapping, this_txflags;
2307 
2308  len = skb_frag_size(this_frag);
2309  mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2310  0, len, DMA_TO_DEVICE);
2311  this_txflags = tx_flags;
2312  if (frag == skb_shinfo(skb)->nr_frags - 1)
2313  this_txflags |= TXFLAG_EOP;
2314  hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2315  (this_txflags | (len & TXFLAG_SIZE)),
2316  mapping);
2317  entry = NEXT_TX(entry);
2318  }
2319  hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2320  (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2321  first_mapping);
2322  }
2323 
2324  hp->tx_new = entry;
2325 
2326  if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2327  netif_stop_queue(dev);
2328 
2329  /* Get it going. */
2331 
2332  spin_unlock_irq(&hp->happy_lock);
2333 
2334  tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2335  return NETDEV_TX_OK;
2336 }
2337 
2338 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2339 {
2340  struct happy_meal *hp = netdev_priv(dev);
2341 
2342  spin_lock_irq(&hp->happy_lock);
2343  happy_meal_get_counters(hp, hp->bigmacregs);
2344  spin_unlock_irq(&hp->happy_lock);
2345 
2346  return &hp->net_stats;
2347 }
2348 
2349 static void happy_meal_set_multicast(struct net_device *dev)
2350 {
2351  struct happy_meal *hp = netdev_priv(dev);
2352  void __iomem *bregs = hp->bigmacregs;
2353  struct netdev_hw_addr *ha;
2354  u32 crc;
2355 
2356  spin_lock_irq(&hp->happy_lock);
2357 
2358  if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2359  hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2360  hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2361  hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2362  hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2363  } else if (dev->flags & IFF_PROMISC) {
2364  hme_write32(hp, bregs + BMAC_RXCFG,
2365  hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2366  } else {
2367  u16 hash_table[4];
2368 
2369  memset(hash_table, 0, sizeof(hash_table));
2370  netdev_for_each_mc_addr(ha, dev) {
2371  crc = ether_crc_le(6, ha->addr);
2372  crc >>= 26;
2373  hash_table[crc >> 4] |= 1 << (crc & 0xf);
2374  }
2375  hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2376  hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2377  hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2378  hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2379  }
2380 
2381  spin_unlock_irq(&hp->happy_lock);
2382 }
2383 
2384 /* Ethtool support... */
2385 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2386 {
2387  struct happy_meal *hp = netdev_priv(dev);
2388  u32 speed;
2389 
2390  cmd->supported =
2394 
2395  /* XXX hardcoded stuff for now */
2396  cmd->port = PORT_TP; /* XXX no MII support */
2397  cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2398  cmd->phy_address = 0; /* XXX fixed PHYAD */
2399 
2400  /* Record PHY settings. */
2401  spin_lock_irq(&hp->happy_lock);
2402  hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2403  hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2404  spin_unlock_irq(&hp->happy_lock);
2405 
2406  if (hp->sw_bmcr & BMCR_ANENABLE) {
2407  cmd->autoneg = AUTONEG_ENABLE;
2408  speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2409  SPEED_100 : SPEED_10);
2410  if (speed == SPEED_100)
2411  cmd->duplex =
2412  (hp->sw_lpa & (LPA_100FULL)) ?
2414  else
2415  cmd->duplex =
2416  (hp->sw_lpa & (LPA_10FULL)) ?
2418  } else {
2419  cmd->autoneg = AUTONEG_DISABLE;
2420  speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2421  cmd->duplex =
2422  (hp->sw_bmcr & BMCR_FULLDPLX) ?
2424  }
2425  ethtool_cmd_speed_set(cmd, speed);
2426  return 0;
2427 }
2428 
2429 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2430 {
2431  struct happy_meal *hp = netdev_priv(dev);
2432 
2433  /* Verify the settings we care about. */
2434  if (cmd->autoneg != AUTONEG_ENABLE &&
2435  cmd->autoneg != AUTONEG_DISABLE)
2436  return -EINVAL;
2437  if (cmd->autoneg == AUTONEG_DISABLE &&
2438  ((ethtool_cmd_speed(cmd) != SPEED_100 &&
2439  ethtool_cmd_speed(cmd) != SPEED_10) ||
2440  (cmd->duplex != DUPLEX_HALF &&
2441  cmd->duplex != DUPLEX_FULL)))
2442  return -EINVAL;
2443 
2444  /* Ok, do it to it. */
2445  spin_lock_irq(&hp->happy_lock);
2446  del_timer(&hp->happy_timer);
2447  happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2448  spin_unlock_irq(&hp->happy_lock);
2449 
2450  return 0;
2451 }
2452 
2453 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2454 {
2455  struct happy_meal *hp = netdev_priv(dev);
2456 
2457  strlcpy(info->driver, "sunhme", sizeof(info->driver));
2458  strlcpy(info->version, "2.02", sizeof(info->version));
2459  if (hp->happy_flags & HFLAG_PCI) {
2460  struct pci_dev *pdev = hp->happy_dev;
2461  strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2462  }
2463 #ifdef CONFIG_SBUS
2464  else {
2465  const struct linux_prom_registers *regs;
2466  struct platform_device *op = hp->happy_dev;
2467  regs = of_get_property(op->dev.of_node, "regs", NULL);
2468  if (regs)
2469  snprintf(info->bus_info, sizeof(info->bus_info),
2470  "SBUS:%d",
2471  regs->which_io);
2472  }
2473 #endif
2474 }
2475 
2476 static u32 hme_get_link(struct net_device *dev)
2477 {
2478  struct happy_meal *hp = netdev_priv(dev);
2479 
2480  spin_lock_irq(&hp->happy_lock);
2481  hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2482  spin_unlock_irq(&hp->happy_lock);
2483 
2484  return hp->sw_bmsr & BMSR_LSTATUS;
2485 }
2486 
2487 static const struct ethtool_ops hme_ethtool_ops = {
2488  .get_settings = hme_get_settings,
2489  .set_settings = hme_set_settings,
2490  .get_drvinfo = hme_get_drvinfo,
2491  .get_link = hme_get_link,
2492 };
2493 
2494 static int hme_version_printed;
2495 
2496 #ifdef CONFIG_SBUS
2497 /* Given a happy meal sbus device, find it's quattro parent.
2498  * If none exist, allocate and return a new one.
2499  *
2500  * Return NULL on failure.
2501  */
2502 static struct quattro * __devinit quattro_sbus_find(struct platform_device *child)
2503 {
2504  struct device *parent = child->dev.parent;
2505  struct platform_device *op;
2506  struct quattro *qp;
2507 
2508  op = to_platform_device(parent);
2509  qp = dev_get_drvdata(&op->dev);
2510  if (qp)
2511  return qp;
2512 
2513  qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2514  if (qp != NULL) {
2515  int i;
2516 
2517  for (i = 0; i < 4; i++)
2518  qp->happy_meals[i] = NULL;
2519 
2520  qp->quattro_dev = child;
2521  qp->next = qfe_sbus_list;
2522  qfe_sbus_list = qp;
2523 
2524  dev_set_drvdata(&op->dev, qp);
2525  }
2526  return qp;
2527 }
2528 
2529 /* After all quattro cards have been probed, we call these functions
2530  * to register the IRQ handlers for the cards that have been
2531  * successfully probed and skip the cards that failed to initialize
2532  */
2533 static int __init quattro_sbus_register_irqs(void)
2534 {
2535  struct quattro *qp;
2536 
2537  for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2538  struct platform_device *op = qp->quattro_dev;
2539  int err, qfe_slot, skip = 0;
2540 
2541  for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2542  if (!qp->happy_meals[qfe_slot])
2543  skip = 1;
2544  }
2545  if (skip)
2546  continue;
2547 
2548  err = request_irq(op->archdata.irqs[0],
2549  quattro_sbus_interrupt,
2550  IRQF_SHARED, "Quattro",
2551  qp);
2552  if (err != 0) {
2553  printk(KERN_ERR "Quattro HME: IRQ registration "
2554  "error %d.\n", err);
2555  return err;
2556  }
2557  }
2558 
2559  return 0;
2560 }
2561 
2562 static void quattro_sbus_free_irqs(void)
2563 {
2564  struct quattro *qp;
2565 
2566  for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2567  struct platform_device *op = qp->quattro_dev;
2568  int qfe_slot, skip = 0;
2569 
2570  for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2571  if (!qp->happy_meals[qfe_slot])
2572  skip = 1;
2573  }
2574  if (skip)
2575  continue;
2576 
2577  free_irq(op->archdata.irqs[0], qp);
2578  }
2579 }
2580 #endif /* CONFIG_SBUS */
2581 
2582 #ifdef CONFIG_PCI
2583 static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
2584 {
2585  struct pci_dev *bdev = pdev->bus->self;
2586  struct quattro *qp;
2587 
2588  if (!bdev) return NULL;
2589  for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2590  struct pci_dev *qpdev = qp->quattro_dev;
2591 
2592  if (qpdev == bdev)
2593  return qp;
2594  }
2595  qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2596  if (qp != NULL) {
2597  int i;
2598 
2599  for (i = 0; i < 4; i++)
2600  qp->happy_meals[i] = NULL;
2601 
2602  qp->quattro_dev = bdev;
2603  qp->next = qfe_pci_list;
2604  qfe_pci_list = qp;
2605 
2606  /* No range tricks necessary on PCI. */
2607  qp->nranges = 0;
2608  }
2609  return qp;
2610 }
2611 #endif /* CONFIG_PCI */
2612 
2613 static const struct net_device_ops hme_netdev_ops = {
2614  .ndo_open = happy_meal_open,
2615  .ndo_stop = happy_meal_close,
2616  .ndo_start_xmit = happy_meal_start_xmit,
2617  .ndo_tx_timeout = happy_meal_tx_timeout,
2618  .ndo_get_stats = happy_meal_get_stats,
2619  .ndo_set_rx_mode = happy_meal_set_multicast,
2620  .ndo_change_mtu = eth_change_mtu,
2621  .ndo_set_mac_address = eth_mac_addr,
2622  .ndo_validate_addr = eth_validate_addr,
2623 };
2624 
2625 #ifdef CONFIG_SBUS
2626 static int __devinit happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2627 {
2628  struct device_node *dp = op->dev.of_node, *sbus_dp;
2629  struct quattro *qp = NULL;
2630  struct happy_meal *hp;
2631  struct net_device *dev;
2632  int i, qfe_slot = -1;
2633  int err = -ENODEV;
2634 
2635  sbus_dp = op->dev.parent->of_node;
2636 
2637  /* We can match PCI devices too, do not accept those here. */
2638  if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2639  return err;
2640 
2641  if (is_qfe) {
2642  qp = quattro_sbus_find(op);
2643  if (qp == NULL)
2644  goto err_out;
2645  for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2646  if (qp->happy_meals[qfe_slot] == NULL)
2647  break;
2648  if (qfe_slot == 4)
2649  goto err_out;
2650  }
2651 
2652  err = -ENOMEM;
2653  dev = alloc_etherdev(sizeof(struct happy_meal));
2654  if (!dev)
2655  goto err_out;
2656  SET_NETDEV_DEV(dev, &op->dev);
2657 
2658  if (hme_version_printed++ == 0)
2659  printk(KERN_INFO "%s", version);
2660 
2661  /* If user did not specify a MAC address specifically, use
2662  * the Quattro local-mac-address property...
2663  */
2664  for (i = 0; i < 6; i++) {
2665  if (macaddr[i] != 0)
2666  break;
2667  }
2668  if (i < 6) { /* a mac address was given */
2669  for (i = 0; i < 6; i++)
2670  dev->dev_addr[i] = macaddr[i];
2671  macaddr[5]++;
2672  } else {
2673  const unsigned char *addr;
2674  int len;
2675 
2676  addr = of_get_property(dp, "local-mac-address", &len);
2677 
2678  if (qfe_slot != -1 && addr && len == 6)
2679  memcpy(dev->dev_addr, addr, 6);
2680  else
2681  memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2682  }
2683 
2684  hp = netdev_priv(dev);
2685 
2686  hp->happy_dev = op;
2687  hp->dma_dev = &op->dev;
2688 
2689  spin_lock_init(&hp->happy_lock);
2690 
2691  err = -ENODEV;
2692  if (qp != NULL) {
2693  hp->qfe_parent = qp;
2694  hp->qfe_ent = qfe_slot;
2695  qp->happy_meals[qfe_slot] = dev;
2696  }
2697 
2698  hp->gregs = of_ioremap(&op->resource[0], 0,
2699  GREG_REG_SIZE, "HME Global Regs");
2700  if (!hp->gregs) {
2701  printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2702  goto err_out_free_netdev;
2703  }
2704 
2705  hp->etxregs = of_ioremap(&op->resource[1], 0,
2706  ETX_REG_SIZE, "HME TX Regs");
2707  if (!hp->etxregs) {
2708  printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2709  goto err_out_iounmap;
2710  }
2711 
2712  hp->erxregs = of_ioremap(&op->resource[2], 0,
2713  ERX_REG_SIZE, "HME RX Regs");
2714  if (!hp->erxregs) {
2715  printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2716  goto err_out_iounmap;
2717  }
2718 
2719  hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2720  BMAC_REG_SIZE, "HME BIGMAC Regs");
2721  if (!hp->bigmacregs) {
2722  printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2723  goto err_out_iounmap;
2724  }
2725 
2726  hp->tcvregs = of_ioremap(&op->resource[4], 0,
2727  TCVR_REG_SIZE, "HME Tranceiver Regs");
2728  if (!hp->tcvregs) {
2729  printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2730  goto err_out_iounmap;
2731  }
2732 
2733  hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2734  if (hp->hm_revision == 0xff)
2735  hp->hm_revision = 0xa0;
2736 
2737  /* Now enable the feature flags we can. */
2738  if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2739  hp->happy_flags = HFLAG_20_21;
2740  else if (hp->hm_revision != 0xa0)
2741  hp->happy_flags = HFLAG_NOT_A0;
2742 
2743  if (qp != NULL)
2744  hp->happy_flags |= HFLAG_QUATTRO;
2745 
2746  /* Get the supported DVMA burst sizes from our Happy SBUS. */
2747  hp->happy_bursts = of_getintprop_default(sbus_dp,
2748  "burst-sizes", 0x00);
2749 
2751  PAGE_SIZE,
2752  &hp->hblock_dvma,
2753  GFP_ATOMIC);
2754  err = -ENOMEM;
2755  if (!hp->happy_block) {
2756  printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2757  goto err_out_iounmap;
2758  }
2759 
2760  /* Force check of the link first time we are brought up. */
2761  hp->linkcheck = 0;
2762 
2763  /* Force timer state to 'asleep' with count of zero. */
2764  hp->timer_state = asleep;
2765  hp->timer_ticks = 0;
2766 
2767  init_timer(&hp->happy_timer);
2768 
2769  hp->dev = dev;
2770  dev->netdev_ops = &hme_netdev_ops;
2771  dev->watchdog_timeo = 5*HZ;
2772  dev->ethtool_ops = &hme_ethtool_ops;
2773 
2774  /* Happy Meal can do it all... */
2776  dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2777 
2778  hp->irq = op->archdata.irqs[0];
2779 
2780 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2781  /* Hook up SBUS register/descriptor accessors. */
2782  hp->read_desc32 = sbus_hme_read_desc32;
2783  hp->write_txd = sbus_hme_write_txd;
2784  hp->write_rxd = sbus_hme_write_rxd;
2785  hp->read32 = sbus_hme_read32;
2786  hp->write32 = sbus_hme_write32;
2787 #endif
2788 
2789  /* Grrr, Happy Meal comes up by default not advertising
2790  * full duplex 100baseT capabilities, fix this.
2791  */
2792  spin_lock_irq(&hp->happy_lock);
2793  happy_meal_set_initial_advertisement(hp);
2794  spin_unlock_irq(&hp->happy_lock);
2795 
2796  err = register_netdev(hp->dev);
2797  if (err) {
2798  printk(KERN_ERR "happymeal: Cannot register net device, "
2799  "aborting.\n");
2800  goto err_out_free_coherent;
2801  }
2802 
2803  dev_set_drvdata(&op->dev, hp);
2804 
2805  if (qfe_slot != -1)
2806  printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2807  dev->name, qfe_slot);
2808  else
2809  printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2810  dev->name);
2811 
2812  printk("%pM\n", dev->dev_addr);
2813 
2814  return 0;
2815 
2816 err_out_free_coherent:
2818  PAGE_SIZE,
2819  hp->happy_block,
2820  hp->hblock_dvma);
2821 
2822 err_out_iounmap:
2823  if (hp->gregs)
2824  of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2825  if (hp->etxregs)
2826  of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2827  if (hp->erxregs)
2828  of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2829  if (hp->bigmacregs)
2831  if (hp->tcvregs)
2832  of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2833 
2834  if (qp)
2835  qp->happy_meals[qfe_slot] = NULL;
2836 
2837 err_out_free_netdev:
2838  free_netdev(dev);
2839 
2840 err_out:
2841  return err;
2842 }
2843 #endif
2844 
2845 #ifdef CONFIG_PCI
2846 #ifndef CONFIG_SPARC
2847 static int is_quattro_p(struct pci_dev *pdev)
2848 {
2849  struct pci_dev *busdev = pdev->bus->self;
2850  struct pci_dev *this_pdev;
2851  int n_hmes;
2852 
2853  if (busdev == NULL ||
2854  busdev->vendor != PCI_VENDOR_ID_DEC ||
2855  busdev->device != PCI_DEVICE_ID_DEC_21153)
2856  return 0;
2857 
2858  n_hmes = 0;
2859  list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2860  if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2861  this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2862  n_hmes++;
2863  }
2864 
2865  if (n_hmes != 4)
2866  return 0;
2867 
2868  return 1;
2869 }
2870 
2871 /* Fetch MAC address from vital product data of PCI ROM. */
2872 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2873 {
2874  int this_offset;
2875 
2876  for (this_offset = 0x20; this_offset < len; this_offset++) {
2877  void __iomem *p = rom_base + this_offset;
2878 
2879  if (readb(p + 0) != 0x90 ||
2880  readb(p + 1) != 0x00 ||
2881  readb(p + 2) != 0x09 ||
2882  readb(p + 3) != 0x4e ||
2883  readb(p + 4) != 0x41 ||
2884  readb(p + 5) != 0x06)
2885  continue;
2886 
2887  this_offset += 6;
2888  p += 6;
2889 
2890  if (index == 0) {
2891  int i;
2892 
2893  for (i = 0; i < 6; i++)
2894  dev_addr[i] = readb(p + i);
2895  return 1;
2896  }
2897  index--;
2898  }
2899  return 0;
2900 }
2901 
2902 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2903 {
2904  size_t size;
2905  void __iomem *p = pci_map_rom(pdev, &size);
2906 
2907  if (p) {
2908  int index = 0;
2909  int found;
2910 
2911  if (is_quattro_p(pdev))
2912  index = PCI_SLOT(pdev->devfn);
2913 
2914  found = readb(p) == 0x55 &&
2915  readb(p + 1) == 0xaa &&
2916  find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2917  pci_unmap_rom(pdev, p);
2918  if (found)
2919  return;
2920  }
2921 
2922  /* Sun MAC prefix then 3 random bytes. */
2923  dev_addr[0] = 0x08;
2924  dev_addr[1] = 0x00;
2925  dev_addr[2] = 0x20;
2926  get_random_bytes(&dev_addr[3], 3);
2927 }
2928 #endif /* !(CONFIG_SPARC) */
2929 
2930 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2931  const struct pci_device_id *ent)
2932 {
2933  struct quattro *qp = NULL;
2934 #ifdef CONFIG_SPARC
2935  struct device_node *dp;
2936 #endif
2937  struct happy_meal *hp;
2938  struct net_device *dev;
2939  void __iomem *hpreg_base;
2940  unsigned long hpreg_res;
2941  int i, qfe_slot = -1;
2942  char prom_name[64];
2943  int err;
2944 
2945  /* Now make sure pci_dev cookie is there. */
2946 #ifdef CONFIG_SPARC
2947  dp = pci_device_to_OF_node(pdev);
2948  strcpy(prom_name, dp->name);
2949 #else
2950  if (is_quattro_p(pdev))
2951  strcpy(prom_name, "SUNW,qfe");
2952  else
2953  strcpy(prom_name, "SUNW,hme");
2954 #endif
2955 
2956  err = -ENODEV;
2957 
2958  if (pci_enable_device(pdev))
2959  goto err_out;
2960  pci_set_master(pdev);
2961 
2962  if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2963  qp = quattro_pci_find(pdev);
2964  if (qp == NULL)
2965  goto err_out;
2966  for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2967  if (qp->happy_meals[qfe_slot] == NULL)
2968  break;
2969  if (qfe_slot == 4)
2970  goto err_out;
2971  }
2972 
2973  dev = alloc_etherdev(sizeof(struct happy_meal));
2974  err = -ENOMEM;
2975  if (!dev)
2976  goto err_out;
2977  SET_NETDEV_DEV(dev, &pdev->dev);
2978 
2979  if (hme_version_printed++ == 0)
2980  printk(KERN_INFO "%s", version);
2981 
2982  hp = netdev_priv(dev);
2983 
2984  hp->happy_dev = pdev;
2985  hp->dma_dev = &pdev->dev;
2986 
2987  spin_lock_init(&hp->happy_lock);
2988 
2989  if (qp != NULL) {
2990  hp->qfe_parent = qp;
2991  hp->qfe_ent = qfe_slot;
2992  qp->happy_meals[qfe_slot] = dev;
2993  }
2994 
2995  hpreg_res = pci_resource_start(pdev, 0);
2996  err = -ENODEV;
2997  if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2998  printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
2999  goto err_out_clear_quattro;
3000  }
3001  if (pci_request_regions(pdev, DRV_NAME)) {
3002  printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3003  "aborting.\n");
3004  goto err_out_clear_quattro;
3005  }
3006 
3007  if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3008  printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3009  goto err_out_free_res;
3010  }
3011 
3012  for (i = 0; i < 6; i++) {
3013  if (macaddr[i] != 0)
3014  break;
3015  }
3016  if (i < 6) { /* a mac address was given */
3017  for (i = 0; i < 6; i++)
3018  dev->dev_addr[i] = macaddr[i];
3019  macaddr[5]++;
3020  } else {
3021 #ifdef CONFIG_SPARC
3022  const unsigned char *addr;
3023  int len;
3024 
3025  if (qfe_slot != -1 &&
3026  (addr = of_get_property(dp, "local-mac-address", &len))
3027  != NULL &&
3028  len == 6) {
3029  memcpy(dev->dev_addr, addr, 6);
3030  } else {
3031  memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3032  }
3033 #else
3034  get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3035 #endif
3036  }
3037 
3038  /* Layout registers. */
3039  hp->gregs = (hpreg_base + 0x0000UL);
3040  hp->etxregs = (hpreg_base + 0x2000UL);
3041  hp->erxregs = (hpreg_base + 0x4000UL);
3042  hp->bigmacregs = (hpreg_base + 0x6000UL);
3043  hp->tcvregs = (hpreg_base + 0x7000UL);
3044 
3045 #ifdef CONFIG_SPARC
3046  hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3047  if (hp->hm_revision == 0xff)
3048  hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3049 #else
3050  /* works with this on non-sparc hosts */
3051  hp->hm_revision = 0x20;
3052 #endif
3053 
3054  /* Now enable the feature flags we can. */
3055  if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3056  hp->happy_flags = HFLAG_20_21;
3057  else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3058  hp->happy_flags = HFLAG_NOT_A0;
3059 
3060  if (qp != NULL)
3061  hp->happy_flags |= HFLAG_QUATTRO;
3062 
3063  /* And of course, indicate this is PCI. */
3064  hp->happy_flags |= HFLAG_PCI;
3065 
3066 #ifdef CONFIG_SPARC
3067  /* Assume PCI happy meals can handle all burst sizes. */
3069 #endif
3070 
3071  hp->happy_block = (struct hmeal_init_block *)
3073 
3074  err = -ENODEV;
3075  if (!hp->happy_block) {
3076  printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3077  goto err_out_iounmap;
3078  }
3079 
3080  hp->linkcheck = 0;
3081  hp->timer_state = asleep;
3082  hp->timer_ticks = 0;
3083 
3084  init_timer(&hp->happy_timer);
3085 
3086  hp->irq = pdev->irq;
3087  hp->dev = dev;
3088  dev->netdev_ops = &hme_netdev_ops;
3089  dev->watchdog_timeo = 5*HZ;
3090  dev->ethtool_ops = &hme_ethtool_ops;
3091 
3092  /* Happy Meal can do it all... */
3094  dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3095 
3096 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3097  /* Hook up PCI register/descriptor accessors. */
3098  hp->read_desc32 = pci_hme_read_desc32;
3099  hp->write_txd = pci_hme_write_txd;
3100  hp->write_rxd = pci_hme_write_rxd;
3101  hp->read32 = pci_hme_read32;
3102  hp->write32 = pci_hme_write32;
3103 #endif
3104 
3105  /* Grrr, Happy Meal comes up by default not advertising
3106  * full duplex 100baseT capabilities, fix this.
3107  */
3108  spin_lock_irq(&hp->happy_lock);
3109  happy_meal_set_initial_advertisement(hp);
3110  spin_unlock_irq(&hp->happy_lock);
3111 
3112  err = register_netdev(hp->dev);
3113  if (err) {
3114  printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3115  "aborting.\n");
3116  goto err_out_iounmap;
3117  }
3118 
3119  dev_set_drvdata(&pdev->dev, hp);
3120 
3121  if (!qfe_slot) {
3122  struct pci_dev *qpdev = qp->quattro_dev;
3123 
3124  prom_name[0] = 0;
3125  if (!strncmp(dev->name, "eth", 3)) {
3126  int i = simple_strtoul(dev->name + 3, NULL, 10);
3127  sprintf(prom_name, "-%d", i + 3);
3128  }
3129  printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3130  if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3131  qpdev->device == PCI_DEVICE_ID_DEC_21153)
3132  printk("DEC 21153 PCI Bridge\n");
3133  else
3134  printk("unknown bridge %04x.%04x\n",
3135  qpdev->vendor, qpdev->device);
3136  }
3137 
3138  if (qfe_slot != -1)
3139  printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3140  dev->name, qfe_slot);
3141  else
3142  printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3143  dev->name);
3144 
3145  printk("%pM\n", dev->dev_addr);
3146 
3147  return 0;
3148 
3149 err_out_iounmap:
3150  iounmap(hp->gregs);
3151 
3152 err_out_free_res:
3153  pci_release_regions(pdev);
3154 
3155 err_out_clear_quattro:
3156  if (qp != NULL)
3157  qp->happy_meals[qfe_slot] = NULL;
3158 
3159  free_netdev(dev);
3160 
3161 err_out:
3162  return err;
3163 }
3164 
3165 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3166 {
3167  struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3168  struct net_device *net_dev = hp->dev;
3169 
3170  unregister_netdev(net_dev);
3171 
3173  hp->happy_block, hp->hblock_dvma);
3174  iounmap(hp->gregs);
3176 
3177  free_netdev(net_dev);
3178 
3179  dev_set_drvdata(&pdev->dev, NULL);
3180 }
3181 
3182 static DEFINE_PCI_DEVICE_TABLE(happymeal_pci_ids) = {
3184  { } /* Terminating entry */
3185 };
3186 
3187 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3188 
3189 static struct pci_driver hme_pci_driver = {
3190  .name = "hme",
3191  .id_table = happymeal_pci_ids,
3192  .probe = happy_meal_pci_probe,
3193  .remove = __devexit_p(happy_meal_pci_remove),
3194 };
3195 
3196 static int __init happy_meal_pci_init(void)
3197 {
3198  return pci_register_driver(&hme_pci_driver);
3199 }
3200 
3201 static void happy_meal_pci_exit(void)
3202 {
3203  pci_unregister_driver(&hme_pci_driver);
3204 
3205  while (qfe_pci_list) {
3206  struct quattro *qfe = qfe_pci_list;
3207  struct quattro *next = qfe->next;
3208 
3209  kfree(qfe);
3210 
3211  qfe_pci_list = next;
3212  }
3213 }
3214 
3215 #endif
3216 
3217 #ifdef CONFIG_SBUS
3218 static const struct of_device_id hme_sbus_match[];
3219 static int __devinit hme_sbus_probe(struct platform_device *op)
3220 {
3221  const struct of_device_id *match;
3222  struct device_node *dp = op->dev.of_node;
3223  const char *model = of_get_property(dp, "model", NULL);
3224  int is_qfe;
3225 
3226  match = of_match_device(hme_sbus_match, &op->dev);
3227  if (!match)
3228  return -EINVAL;
3229  is_qfe = (match->data != NULL);
3230 
3231  if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3232  is_qfe = 1;
3233 
3234  return happy_meal_sbus_probe_one(op, is_qfe);
3235 }
3236 
3237 static int __devexit hme_sbus_remove(struct platform_device *op)
3238 {
3239  struct happy_meal *hp = dev_get_drvdata(&op->dev);
3240  struct net_device *net_dev = hp->dev;
3241 
3242  unregister_netdev(net_dev);
3243 
3244  /* XXX qfe parent interrupt... */
3245 
3246  of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3247  of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3248  of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3250  of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3252  PAGE_SIZE,
3253  hp->happy_block,
3254  hp->hblock_dvma);
3255 
3256  free_netdev(net_dev);
3257 
3258  dev_set_drvdata(&op->dev, NULL);
3259 
3260  return 0;
3261 }
3262 
3263 static const struct of_device_id hme_sbus_match[] = {
3264  {
3265  .name = "SUNW,hme",
3266  },
3267  {
3268  .name = "SUNW,qfe",
3269  .data = (void *) 1,
3270  },
3271  {
3272  .name = "qfe",
3273  .data = (void *) 1,
3274  },
3275  {},
3276 };
3277 
3278 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3279 
3280 static struct platform_driver hme_sbus_driver = {
3281  .driver = {
3282  .name = "hme",
3283  .owner = THIS_MODULE,
3284  .of_match_table = hme_sbus_match,
3285  },
3286  .probe = hme_sbus_probe,
3287  .remove = __devexit_p(hme_sbus_remove),
3288 };
3289 
3290 static int __init happy_meal_sbus_init(void)
3291 {
3292  int err;
3293 
3294  err = platform_driver_register(&hme_sbus_driver);
3295  if (!err)
3296  err = quattro_sbus_register_irqs();
3297 
3298  return err;
3299 }
3300 
3301 static void happy_meal_sbus_exit(void)
3302 {
3303  platform_driver_unregister(&hme_sbus_driver);
3304  quattro_sbus_free_irqs();
3305 
3306  while (qfe_sbus_list) {
3307  struct quattro *qfe = qfe_sbus_list;
3308  struct quattro *next = qfe->next;
3309 
3310  kfree(qfe);
3311 
3312  qfe_sbus_list = next;
3313  }
3314 }
3315 #endif
3316 
3317 static int __init happy_meal_probe(void)
3318 {
3319  int err = 0;
3320 
3321 #ifdef CONFIG_SBUS
3322  err = happy_meal_sbus_init();
3323 #endif
3324 #ifdef CONFIG_PCI
3325  if (!err) {
3326  err = happy_meal_pci_init();
3327 #ifdef CONFIG_SBUS
3328  if (err)
3329  happy_meal_sbus_exit();
3330 #endif
3331  }
3332 #endif
3333 
3334  return err;
3335 }
3336 
3337 
3338 static void __exit happy_meal_exit(void)
3339 {
3340 #ifdef CONFIG_SBUS
3341  happy_meal_sbus_exit();
3342 #endif
3343 #ifdef CONFIG_PCI
3344  happy_meal_pci_exit();
3345 #endif
3346 }
3347 
3348 module_init(happy_meal_probe);
3349 module_exit(happy_meal_exit);