Ordered ring homomorphisms #
Homomorphisms between ordered (semi)rings that respect the ordering.
Main definitions #
order_ring_hom
: A monotone homomorphismf
between twoordered_semiring
s.
Notation #
→+*o
: Type of ordered ring homomorphisms.
Tags #
ordered ring homomorphism, order homomorphism
- to_ring_hom : α →+* β
- monotone' : monotone self.to_ring_hom.to_fun
order_ring_hom α β
is the type of monotone semiring homomorphisms from α
to β
.
When possible, instead of parametrizing results over (f : order_ring_hom α β)
,
you should parametrize over (F : Type*) [order_ring_hom_class F α β] (f : F)
.
When you extend this structure, make sure to extend order_ring_hom_class
.
- to_ring_hom_class : ring_hom_class F α β
- monotone : ∀ (f : F), monotone ⇑f
order_ring_hom_class F α β
states that F
is a type of ordered semiring homomorphisms.
You should extend this typeclass when you extend order_ring_hom
.
Instances
Equations
Equations
- order_ring_hom_class.to_order_monoid_with_zero_hom_class = {to_monoid_with_zero_hom_class := {coe := ring_hom_class.coe order_ring_hom_class.to_ring_hom_class, coe_injective' := _, map_mul := _, map_one := _, map_zero := _}, monotone := _}
Ordered ring homomorphisms #
Reinterpret an ordered ring homomorphism as an ordered additive monoid homomorphism.
Equations
- f.to_order_add_monoid_hom = {to_add_monoid_hom := {to_fun := f.to_ring_hom.to_fun, map_zero' := _, map_add' := _}, monotone' := _}
Reinterpret an ordered ring homomorphism as an order homomorphism.
Equations
- f.to_order_monoid_with_zero_hom = {to_monoid_with_zero_hom := {to_fun := f.to_ring_hom.to_fun, map_zero' := _, map_one' := _, map_mul' := _}, monotone' := _}
Equations
- order_ring_hom.order_ring_hom_class = {to_ring_hom_class := {coe := λ (f : α →+*o β), f.to_ring_hom.to_fun, coe_injective' := _, map_mul := _, map_one := _, map_add := _, map_zero := _}, monotone := _}
Helper instance for when there's too many metavariables to apply fun_like.has_coe_to_fun
directly.
Equations
- order_ring_hom.has_coe_to_fun = {coe := λ (f : α →+*o β), f.to_ring_hom.to_fun}
Copy of a order_ring_hom
with a new to_fun
equal to the old one. Useful to fix definitional
equalities.
The identity as an ordered ring homomorphism.
Equations
- order_ring_hom.id α = {to_ring_hom := {to_fun := (ring_hom.id α).to_fun, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}, monotone' := _}
Equations
- order_ring_hom.inhabited α = {default := order_ring_hom.id α _inst_1}
Composition of two order_ring_hom
s as an order_ring_hom
.
Equations
- f.comp g = {to_ring_hom := {to_fun := (f.to_ring_hom.comp g.to_ring_hom).to_fun, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}, monotone' := _}
Equations
- order_ring_hom.partial_order = partial_order.lift coe_fn order_ring_hom.partial_order._proof_1