mathlib documentation

measure_theory.group.integration

Integration on Groups #

We develop properties of integrals with a group as domain. This file contains properties about integrability, Lebesgue integration and Bochner integration.

theorem measure_theory.lintegral_mul_left_eq_self {G : Type u_2} [measurable_space G] {μ : measure_theory.measure G} [group G] [has_measurable_mul G] [μ.is_mul_left_invariant] (f : G → ℝ≥0∞) (g : G) :
∫⁻ (x : G), f (g * x) μ = ∫⁻ (x : G), f x μ

Translating a function by left-multiplication does not change its lintegral with respect to a left-invariant measure.

theorem measure_theory.lintegral_add_left_eq_self {G : Type u_2} [measurable_space G] {μ : measure_theory.measure G} [add_group G] [has_measurable_add G] [μ.is_add_left_invariant] (f : G → ℝ≥0∞) (g : G) :
∫⁻ (x : G), f (g + x) μ = ∫⁻ (x : G), f x μ
theorem measure_theory.lintegral_add_right_eq_self {G : Type u_2} [measurable_space G] {μ : measure_theory.measure G} [add_group G] [has_measurable_add G] [μ.is_add_right_invariant] (f : G → ℝ≥0∞) (g : G) :
∫⁻ (x : G), f (x + g) μ = ∫⁻ (x : G), f x μ
theorem measure_theory.lintegral_mul_right_eq_self {G : Type u_2} [measurable_space G] {μ : measure_theory.measure G} [group G] [has_measurable_mul G] [μ.is_mul_right_invariant] (f : G → ℝ≥0∞) (g : G) :
∫⁻ (x : G), f (x * g) μ = ∫⁻ (x : G), f x μ

Translating a function by right-multiplication does not change its lintegral with respect to a right-invariant measure.

Translating a function by left-multiplication does not change its integral with respect to a left-invariant measure.

Translating a function by right-multiplication does not change its integral with respect to a right-invariant measure.

theorem measure_theory.integral_zero_of_mul_left_eq_neg {G : Type u_2} {E : Type u_3} [measurable_space G] {μ : measure_theory.measure G} [normed_group E] [topological_space.second_countable_topology E] [normed_space E] [complete_space E] [measurable_space E] [borel_space E] [group G] [has_measurable_mul G] [μ.is_mul_left_invariant] {f : G → E} {g : G} (hf' : ∀ (x : G), f (g * x) = -f x) :
(x : G), f x μ = 0

If some left-translate of a function negates it, then the integral of the function with respect to a left-invariant measure is 0.

theorem measure_theory.integral_zero_of_add_left_eq_neg {G : Type u_2} {E : Type u_3} [measurable_space G] {μ : measure_theory.measure G} [normed_group E] [topological_space.second_countable_topology E] [normed_space E] [complete_space E] [measurable_space E] [borel_space E] [add_group G] [has_measurable_add G] [μ.is_add_left_invariant] {f : G → E} {g : G} (hf' : ∀ (x : G), f (g + x) = -f x) :
(x : G), f x μ = 0
theorem measure_theory.integral_zero_of_add_right_eq_neg {G : Type u_2} {E : Type u_3} [measurable_space G] {μ : measure_theory.measure G} [normed_group E] [topological_space.second_countable_topology E] [normed_space E] [complete_space E] [measurable_space E] [borel_space E] [add_group G] [has_measurable_add G] [μ.is_add_right_invariant] {f : G → E} {g : G} (hf' : ∀ (x : G), f (x + g) = -f x) :
(x : G), f x μ = 0
theorem measure_theory.integral_zero_of_mul_right_eq_neg {G : Type u_2} {E : Type u_3} [measurable_space G] {μ : measure_theory.measure G} [normed_group E] [topological_space.second_countable_topology E] [normed_space E] [complete_space E] [measurable_space E] [borel_space E] [group G] [has_measurable_mul G] [μ.is_mul_right_invariant] {f : G → E} {g : G} (hf' : ∀ (x : G), f (x * g) = -f x) :
(x : G), f x μ = 0

If some right-translate of a function negates it, then the integral of the function with respect to a right-invariant measure is 0.

For nonzero regular left invariant measures, the integral of a continuous nonnegative function f is 0 iff f is 0.