Left invariant derivations #
In this file we define the concept of left invariant derivation for a Lie group. The concept is analogous to the more classical concept of left invariant vector fields, and it holds that the derivation associated to a vector field is left invariant iff the field is.
Moreover we prove that left_invariant_derivation I G
has the structure of a Lie algebra, hence
implementing one of the possible definitions of the Lie algebra attached to a Lie group.
- to_derivation : derivation 𝕜 C^⊤⟮I, G; 𝓘(𝕜, 𝕜), 𝕜⟯ C^⊤⟮I, G; 𝓘(𝕜, 𝕜), 𝕜⟯
- left_invariant'' : ∀ (g : G), ⇑(𝒅ₕ _) (⇑(derivation.eval_at 1) self.to_derivation) = ⇑(derivation.eval_at g) self.to_derivation
Left-invariant global derivations.
A global derivation is left-invariant if it is equal to its pullback along left multiplication by
an arbitrary element of G
.
Equations
- left_invariant_derivation.derivation.has_coe = {coe := λ (X : left_invariant_derivation I G), X.to_derivation}
Equations
Premature version of the lemma. Prefer using left_invariant
instead.
Equations
- left_invariant_derivation.has_zero = {zero := {to_derivation := 0, left_invariant'' := _}}
Equations
Equations
- left_invariant_derivation.has_add = {add := λ (X Y : left_invariant_derivation I G), {to_derivation := ↑X + ↑Y, left_invariant'' := _}}
Equations
- left_invariant_derivation.has_neg = {neg := λ (X : left_invariant_derivation I G), {to_derivation := -↑X, left_invariant'' := _}}
Equations
- left_invariant_derivation.has_sub = {sub := λ (X Y : left_invariant_derivation I G), {to_derivation := ↑X - ↑Y, left_invariant'' := _}}
Equations
- left_invariant_derivation.has_scalar = {smul := λ (r : 𝕜) (X : left_invariant_derivation I G), {to_derivation := r • ↑X, left_invariant'' := _}}
The coercion to function is a monoid homomorphism.
Equations
- left_invariant_derivation.coe_fn_add_monoid_hom I G = {to_fun := λ (X : left_invariant_derivation I G), X.to_derivation.to_linear_map.to_fun, map_zero' := _, map_add' := _}
Evaluation at a point for left invariant derivation. Same thing as for generic global
derivations (derivation.eval_at
).
Equations
- left_invariant_derivation.eval_at g = {to_fun := λ (X : left_invariant_derivation I G), ⇑(derivation.eval_at g) ↑X, map_add' := _, map_smul' := _}
Equations
- left_invariant_derivation.has_bracket = {bracket := λ (X Y : left_invariant_derivation I G), {to_derivation := ⁅↑X,↑Y⁆, left_invariant'' := _}}
Equations
- left_invariant_derivation.lie_ring = {to_add_comm_group := left_invariant_derivation.add_comm_group _inst_8, to_has_bracket := left_invariant_derivation.has_bracket _inst_8, add_lie := _, lie_add := _, lie_self := _, leibniz_lie := _}
Equations
- left_invariant_derivation.lie_algebra = {to_module := left_invariant_derivation.module _inst_8, lie_smul := _}