theorem
complex.log_exp
{x : ℂ}
(hx₁ : -real.pi < x.im)
(hx₂ : x.im ≤ real.pi) :
complex.log (complex.exp x) = x
theorem
complex.exp_eq_exp_iff_exp_sub_eq_one
{x y : ℂ} :
complex.exp x = complex.exp y ↔ complex.exp (x - y) = 1
@[simp]
Alias of countable_preimage_exp
.
theorem
complex.continuous_within_at_log_of_re_neg_of_im_zero
{z : ℂ}
(hre : z.re < 0)
(him : z.im = 0) :
continuous_within_at complex.log {z : ℂ | 0 ≤ z.im} z
theorem
filter.tendsto.clog
{α : Type u_1}
{l : filter α}
{f : α → ℂ}
{x : ℂ}
(h : filter.tendsto f l (𝓝 x))
(hx : 0 < x.re ∨ x.im ≠ 0) :
filter.tendsto (λ (t : α), complex.log (f t)) l (𝓝 (complex.log x))
theorem
continuous_at.clog
{α : Type u_1}
[topological_space α]
{f : α → ℂ}
{x : α}
(h₁ : continuous_at f x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_at (λ (t : α), complex.log (f t)) x
theorem
continuous_within_at.clog
{α : Type u_1}
[topological_space α]
{f : α → ℂ}
{s : set α}
{x : α}
(h₁ : continuous_within_at f s x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_within_at (λ (t : α), complex.log (f t)) s x
theorem
continuous_on.clog
{α : Type u_1}
[topological_space α]
{f : α → ℂ}
{s : set α}
(h₁ : continuous_on f s)
(h₂ : ∀ (x : α), x ∈ s → 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_on (λ (t : α), complex.log (f t)) s
theorem
continuous.clog
{α : Type u_1}
[topological_space α]
{f : α → ℂ}
(h₁ : continuous f)
(h₂ : ∀ (x : α), 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous (λ (t : α), complex.log (f t))