mathlib documentation

measure_theory.integral.periodic

Integrals of periodic functions #

In this file we prove that ∫ x in b..b + a, f x = ∫ x in c..c + a, f x for any (not necessarily measurable) function periodic function with period a.

theorem function.periodic.interval_integral_add_eq_of_pos {E : Type u_1} [normed_group E] [normed_space E] [measurable_space E] [borel_space E] [complete_space E] [topological_space.second_countable_topology E] {f : → E} {a : } (hf : function.periodic f a) (ha : 0 < a) (b c : ) :
∫ (x : ) in b..b + a, f x = ∫ (x : ) in c..c + a, f x

An auxiliary lemma for a more general function.periodic.interval_integral_add_eq.

theorem function.periodic.interval_integral_add_eq {E : Type u_1} [normed_group E] [normed_space E] [measurable_space E] [borel_space E] [complete_space E] [topological_space.second_countable_topology E] {f : → E} {a : } (hf : function.periodic f a) (b c : ) :
∫ (x : ) in b..b + a, f x = ∫ (x : ) in c..c + a, f x

If f is a periodic function with period a, then its integral over [b, b + a] does not depend on b.