zmod n
and quotient groups / rings #
This file relates zmod n
to the quotient group
quotient_add_group.quotient (add_subgroup.zmultiples n)
and to the quotient ring
(ideal.span {n}).quotient
.
Main definitions #
zmod.quotient_zmultiples_nat_equiv_zmod
andzmod.quotient_zmultiples_equiv_zmod
:zmod n
is the group quotient ofℤ
byn ℤ := add_subgroup.zmultiples (n)
, (wheren : ℕ
andn : ℤ
respectively)zmod.quotient_span_nat_equiv_zmod
andzmod.quotient_span_equiv_zmod
:zmod n
is the ring quotient ofℤ
byn ℤ : ideal.span {n}
(wheren : ℕ
andn : ℤ
respectively)zmod.lift n f
is the map fromzmod n
induced byf : ℤ →+ A
that mapsn
to0
.
Tags #
zmod, quotient group, quotient ring, ideal quotient
ℤ
modulo multiples of n : ℕ
is zmod n
.
ℤ
modulo multiples of a : ℤ
is zmod a.nat_abs
.
ℤ
modulo the ideal generated by n : ℕ
is zmod n
.
ℤ
modulo the ideal generated by a : ℤ
is zmod a.nat_abs
.