Class numbers of function fields #
This file defines the class number of a function field as the (finite) cardinality of the class group of its ring of integers. It also proves some elementary results on the class number.
Main definitions #
function_field.class_number
: the class number of a function field is the (finite) cardinality of the class group of its ring of integers
@[protected, instance]
noncomputable
def
function_field.ring_of_integers.class_group.fintype
(Fq F : Type)
[field Fq]
[fintype Fq]
[field F]
[algebra Fq[X] F]
[algebra (ratfunc Fq) F]
[is_scalar_tower Fq[X] (ratfunc Fq) F]
[function_field Fq F]
[is_separable (ratfunc Fq) F] :
fintype (class_group ↥(function_field.ring_of_integers Fq F) F)
noncomputable
def
function_field.class_number
(Fq F : Type)
[field Fq]
[fintype Fq]
[field F]
[algebra Fq[X] F]
[algebra (ratfunc Fq) F]
[is_scalar_tower Fq[X] (ratfunc Fq) F]
[function_field Fq F]
[is_separable (ratfunc Fq) F] :
The class number in a function field is the (finite) cardinality of the class group.
Equations
theorem
function_field.class_number_eq_one_iff
(Fq F : Type)
[field Fq]
[fintype Fq]
[field F]
[algebra Fq[X] F]
[algebra (ratfunc Fq) F]
[is_scalar_tower Fq[X] (ratfunc Fq) F]
[function_field Fq F]
[is_separable (ratfunc Fq) F] :
The class number of a function field is 1
iff the ring of integers is a PID.