Central binomial coefficients #
This file proves properties of the central binomial coefficients (that is, nat.choose (2 * n) n
).
Main definition and results #
nat.central_binom
: the central binomial coefficient,(2 * n).choose n
.nat.succ_mul_central_binom_succ
: the inductive relationship between successive central binomial coefficients.nat.four_pow_lt_mul_central_binom
: an exponential lower bound on the central binomial coefficient.
The central binomial coefficient, nat.choose (2 * n) n
.
Equations
- n.central_binom = (2 * n).choose n
The central binomial coefficient is the largest binomial coefficient.
theorem
nat.succ_mul_central_binom_succ
(n : ℕ) :
(n + 1) * (n + 1).central_binom = (2 * (2 * n + 1)) * n.central_binom
An inductive property of the central binomial coefficient.
An exponential lower bound on the central binomial coefficient. This bound is of interest because it appears in Tochiori's refinement of Erdős's proof of Bertrand's postulate.
theorem
nat.four_pow_le_two_mul_self_mul_central_binom
(n : ℕ)
(n_pos : 0 < n) :
4 ^ n ≤ (2 * n) * n.central_binom
An exponential lower bound on the central binomial coefficient.
This bound is weaker than four_pow_n_lt_n_mul_central_binom
, but it is of historical interest
because it appears in Erdős's proof of Bertrand's postulate.