Continuous Monoid Homs #
This file defines the space of continuous homomorphisms between two topological groups.
Main definitions #
continuous_monoid_hom A B
: The continuous homomorphismsA →* B
.
- to_fun : A → B
- map_one' : self.to_fun 1 = 1
- map_mul' : ∀ (x y : A), self.to_fun (x * y) = (self.to_fun x) * self.to_fun y
- continuous_to_fun : continuous self.to_fun . "continuity'"
Continuous homomorphisms between two topological groups.
Reinterpret a continuous_monoid_hom
as a continuous_map
.
Reinterpret a continuous_monoid_hom
as a monoid_hom
.
Reinterpret a continuous_add_monoid_hom
as an add_monoid_hom
.
- to_fun : A → B
- map_zero' : self.to_fun 0 = 0
- map_add' : ∀ (x y : A), self.to_fun (x + y) = self.to_fun x + self.to_fun y
- continuous_to_fun : continuous self.to_fun . "continuity'"
Continuous homomorphisms between two topological groups.
Reinterpret a continuous_add_monoid_hom
as a continuous_map
.
Equations
Equations
Construct a continuous_add_monoid_hom
from a continuous
add_monoid_hom
.
Equations
- continuous_add_monoid_hom.mk' f hf = {to_fun := f.to_fun, map_zero' := _, map_add' := _, continuous_to_fun := hf}
Construct a continuous_monoid_hom
from a continuous
monoid_hom
.
Equations
- continuous_monoid_hom.mk' f hf = {to_fun := f.to_fun, map_one' := _, map_mul' := _, continuous_to_fun := hf}
Composition of two continuous homomorphisms.
Equations
Composition of two continuous homomorphisms.
Equations
- g.comp f = continuous_monoid_hom.mk' (g.to_monoid_hom.comp f.to_monoid_hom) _
Product of two continuous homomorphisms on the same space.
Equations
Product of two continuous homomorphisms on the same space.
Equations
- f.prod g = continuous_monoid_hom.mk' (f.to_monoid_hom.prod g.to_monoid_hom) _
Product of two continuous homomorphisms on different spaces.
Equations
- f.prod_map g = continuous_monoid_hom.mk' (f.to_monoid_hom.prod_map g.to_monoid_hom) _
Product of two continuous homomorphisms on different spaces.
Equations
The trivial continuous homomorphism.
Equations
The trivial continuous homomorphism.
Equations
Equations
- continuous_monoid_hom.inhabited A B = {default := continuous_monoid_hom.one A B _inst_7}
Equations
- continuous_add_monoid_hom.inhabited A B = {default := continuous_add_monoid_hom.zero A B _inst_7}
The identity continuous homomorphism.
The identity continuous homomorphism.
Equations
The continuous homomorphism given by projection onto the first factor.
Equations
The continuous homomorphism given by projection onto the first factor.
Equations
The continuous homomorphism given by projection onto the second factor.
Equations
The continuous homomorphism given by projection onto the second factor.
Equations
The continuous homomorphism given by inclusion of the first factor.
Equations
The continuous homomorphism given by inclusion of the first factor.
Equations
The continuous homomorphism given by inclusion of the second factor.
Equations
The continuous homomorphism given by inclusion of the second factor.
Equations
The continuous homomorphism given by the diagonal embedding.
Equations
The continuous homomorphism given by the diagonal embedding.
Equations
The continuous homomorphism given by swapping components.
Equations
The continuous homomorphism given by swapping components.
Equations
The continuous homomorphism given by multiplication.
Equations
The continuous homomorphism given by addition.
The continuous homomorphism given by negation.
The continuous homomorphism given by inversion.
Coproduct of two continuous homomorphisms to the same space.
Equations
- f.coprod g = (continuous_monoid_hom.mul E).comp (f.prod_map g)
Coproduct of two continuous homomorphisms to the same space.
Equations
- f.coprod g = (continuous_add_monoid_hom.add E).comp (f.sum_map g)
Equations
- continuous_add_monoid_hom.add_comm_group = {add := λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g), add_assoc := _, zero := continuous_add_monoid_hom.zero A E _inst_10, zero_add := _, add_zero := _, nsmul := add_group.nsmul._default (continuous_add_monoid_hom.zero A E) (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_4 continuous_add_monoid_hom.add_comm_group._proof_5, nsmul_zero' := _, nsmul_succ' := _, neg := λ (f : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.neg E).comp f, sub := add_group.sub._default (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_8 (continuous_add_monoid_hom.zero A E) continuous_add_monoid_hom.add_comm_group._proof_9 continuous_add_monoid_hom.add_comm_group._proof_10 (add_group.nsmul._default (continuous_add_monoid_hom.zero A E) (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_4 continuous_add_monoid_hom.add_comm_group._proof_5) continuous_add_monoid_hom.add_comm_group._proof_11 continuous_add_monoid_hom.add_comm_group._proof_12 (λ (f : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.neg E).comp f), sub_eq_add_neg := _, zsmul := add_group.zsmul._default (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_14 (continuous_add_monoid_hom.zero A E) continuous_add_monoid_hom.add_comm_group._proof_15 continuous_add_monoid_hom.add_comm_group._proof_16 (add_group.nsmul._default (continuous_add_monoid_hom.zero A E) (λ (f g : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.add E).comp (f.sum g)) continuous_add_monoid_hom.add_comm_group._proof_4 continuous_add_monoid_hom.add_comm_group._proof_5) continuous_add_monoid_hom.add_comm_group._proof_17 continuous_add_monoid_hom.add_comm_group._proof_18 (λ (f : continuous_add_monoid_hom A E), (continuous_add_monoid_hom.neg E).comp f), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _}
Equations
- continuous_monoid_hom.comm_group = {mul := λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g), mul_assoc := _, one := continuous_monoid_hom.one A E _inst_10, one_mul := _, mul_one := _, npow := group.npow._default (continuous_monoid_hom.one A E) (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_4 continuous_monoid_hom.comm_group._proof_5, npow_zero' := _, npow_succ' := _, inv := λ (f : continuous_monoid_hom A E), (continuous_monoid_hom.inv E).comp f, div := group.div._default (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_8 (continuous_monoid_hom.one A E) continuous_monoid_hom.comm_group._proof_9 continuous_monoid_hom.comm_group._proof_10 (group.npow._default (continuous_monoid_hom.one A E) (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_4 continuous_monoid_hom.comm_group._proof_5) continuous_monoid_hom.comm_group._proof_11 continuous_monoid_hom.comm_group._proof_12 (λ (f : continuous_monoid_hom A E), (continuous_monoid_hom.inv E).comp f), div_eq_mul_inv := _, zpow := group.zpow._default (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_14 (continuous_monoid_hom.one A E) continuous_monoid_hom.comm_group._proof_15 continuous_monoid_hom.comm_group._proof_16 (group.npow._default (continuous_monoid_hom.one A E) (λ (f g : continuous_monoid_hom A E), (continuous_monoid_hom.mul E).comp (f.prod g)) continuous_monoid_hom.comm_group._proof_4 continuous_monoid_hom.comm_group._proof_5) continuous_monoid_hom.comm_group._proof_17 continuous_monoid_hom.comm_group._proof_18 (λ (f : continuous_monoid_hom A E), (continuous_monoid_hom.inv E).comp f), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, mul_left_inv := _, mul_comm := _}