mathlib documentation

topology.algebra.continuous_monoid_hom

Continuous Monoid Homs #

This file defines the space of continuous homomorphisms between two topological groups.

Main definitions #

structure continuous_monoid_hom (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] :
Type (max u_1 u_2)

Continuous homomorphisms between two topological groups.

def continuous_monoid_hom.to_monoid_hom {A : Type u_1} {B : Type u_2} [monoid A] [monoid B] [topological_space A] [topological_space B] (self : continuous_monoid_hom A B) :
A →* B

Reinterpret a continuous_monoid_hom as a monoid_hom.

structure continuous_add_monoid_hom (A : Type u_6) (B : Type u_7) [add_monoid A] [add_monoid B] [topological_space A] [topological_space B] :
Type (max u_6 u_7)

Continuous homomorphisms between two topological groups.

@[protected, instance]
def continuous_monoid_hom.has_coe_to_fun {A : Type u_1} {B : Type u_2} [monoid A] [monoid B] [topological_space A] [topological_space B] :
Equations
theorem continuous_add_monoid_hom.ext {A : Type u_1} {B : Type u_2} [add_monoid A] [add_monoid B] [topological_space A] [topological_space B] {f g : continuous_add_monoid_hom A B} (h : ∀ (x : A), f x = g x) :
f = g
theorem continuous_monoid_hom.ext {A : Type u_1} {B : Type u_2} [monoid A] [monoid B] [topological_space A] [topological_space B] {f g : continuous_monoid_hom A B} (h : ∀ (x : A), f x = g x) :
f = g
@[simp]
theorem continuous_add_monoid_hom.mk'_apply {A : Type u_1} {B : Type u_2} [add_monoid A] [add_monoid B] [topological_space A] [topological_space B] (f : A →+ B) (hf : continuous f) (ᾰ : A) :
@[simp]
theorem continuous_monoid_hom.mk'_apply {A : Type u_1} {B : Type u_2} [monoid A] [monoid B] [topological_space A] [topological_space B] (f : A →* B) (hf : continuous f) (ᾰ : A) :
def continuous_monoid_hom.mk' {A : Type u_1} {B : Type u_2} [monoid A] [monoid B] [topological_space A] [topological_space B] (f : A →* B) (hf : continuous f) :

Construct a continuous_monoid_hom from a continuous monoid_hom.

Equations

Composition of two continuous homomorphisms.

Equations
def continuous_monoid_hom.comp {A : Type u_1} {B : Type u_2} {C : Type u_3} [monoid A] [monoid B] [monoid C] [topological_space A] [topological_space B] [topological_space C] (g : continuous_monoid_hom B C) (f : continuous_monoid_hom A B) :

Composition of two continuous homomorphisms.

Equations
@[simp]
theorem continuous_monoid_hom.comp_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} [monoid A] [monoid B] [monoid C] [topological_space A] [topological_space B] [topological_space C] (g : continuous_monoid_hom B C) (f : continuous_monoid_hom A B) (ᾰ : A) :
@[simp]
theorem continuous_add_monoid_hom.comp_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} [add_monoid A] [add_monoid B] [add_monoid C] [topological_space A] [topological_space B] [topological_space C] (g : continuous_add_monoid_hom B C) (f : continuous_add_monoid_hom A B) (ᾰ : A) :

Product of two continuous homomorphisms on the same space.

Equations
def continuous_monoid_hom.prod {A : Type u_1} {B : Type u_2} {C : Type u_3} [monoid A] [monoid B] [monoid C] [topological_space A] [topological_space B] [topological_space C] (f : continuous_monoid_hom A B) (g : continuous_monoid_hom A C) :

Product of two continuous homomorphisms on the same space.

Equations
@[simp]
theorem continuous_monoid_hom.prod_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} [monoid A] [monoid B] [monoid C] [topological_space A] [topological_space B] [topological_space C] (f : continuous_monoid_hom A B) (g : continuous_monoid_hom A C) (ᾰ : A) :
(f.prod g).to_fun = ((f.to_monoid_hom) ᾰ, (g.to_monoid_hom) ᾰ)
@[simp]
theorem continuous_add_monoid_hom.sum_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} [add_monoid A] [add_monoid B] [add_monoid C] [topological_space A] [topological_space B] [topological_space C] (f : continuous_add_monoid_hom A B) (g : continuous_add_monoid_hom A C) (ᾰ : A) :
def continuous_monoid_hom.prod_map {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [monoid A] [monoid B] [monoid C] [monoid D] [topological_space A] [topological_space B] [topological_space C] [topological_space D] (f : continuous_monoid_hom A C) (g : continuous_monoid_hom B D) :

Product of two continuous homomorphisms on different spaces.

Equations
@[simp]
theorem continuous_monoid_hom.prod_map_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [monoid A] [monoid B] [monoid C] [monoid D] [topological_space A] [topological_space B] [topological_space C] [topological_space D] (f : continuous_monoid_hom A C) (g : continuous_monoid_hom B D) (ᾰ : A × B) :
@[simp]
theorem continuous_add_monoid_hom.sum_map_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [add_monoid A] [add_monoid B] [add_monoid C] [add_monoid D] [topological_space A] [topological_space B] [topological_space C] [topological_space D] (f : continuous_add_monoid_hom A C) (g : continuous_add_monoid_hom B D) (ᾰ : A × B) :

Product of two continuous homomorphisms on different spaces.

Equations
@[simp]
theorem continuous_monoid_hom.one_apply (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] (ᾰ : A) :

The trivial continuous homomorphism.

Equations
@[simp]
theorem continuous_add_monoid_hom.zero_apply (A : Type u_1) (B : Type u_2) [add_monoid A] [add_monoid B] [topological_space A] [topological_space B] (ᾰ : A) :
def continuous_monoid_hom.one (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] :

The trivial continuous homomorphism.

Equations
@[protected, instance]
Equations
@[simp]
@[simp]
theorem continuous_monoid_hom.id_apply (A : Type u_1) [monoid A] [topological_space A] (ᾰ : A) :
def continuous_monoid_hom.fst (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] :

The continuous homomorphism given by projection onto the first factor.

Equations
@[simp]
theorem continuous_monoid_hom.fst_apply (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] (ᾰ : A × B) :

The continuous homomorphism given by projection onto the first factor.

Equations
@[simp]
theorem continuous_add_monoid_hom.fst_apply (A : Type u_1) (B : Type u_2) [add_monoid A] [add_monoid B] [topological_space A] [topological_space B] (ᾰ : A × B) :
def continuous_monoid_hom.snd (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] :

The continuous homomorphism given by projection onto the second factor.

Equations

The continuous homomorphism given by projection onto the second factor.

Equations
@[simp]
theorem continuous_add_monoid_hom.snd_apply (A : Type u_1) (B : Type u_2) [add_monoid A] [add_monoid B] [topological_space A] [topological_space B] (ᾰ : A × B) :
@[simp]
theorem continuous_monoid_hom.snd_apply (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] (ᾰ : A × B) :
def continuous_monoid_hom.inl (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] :

The continuous homomorphism given by inclusion of the first factor.

Equations

The continuous homomorphism given by inclusion of the first factor.

Equations

The continuous homomorphism given by inclusion of the second factor.

Equations
def continuous_monoid_hom.inr (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] :

The continuous homomorphism given by inclusion of the second factor.

Equations

The continuous homomorphism given by the diagonal embedding.

Equations

The continuous homomorphism given by the diagonal embedding.

Equations
def continuous_monoid_hom.swap (A : Type u_1) (B : Type u_2) [monoid A] [monoid B] [topological_space A] [topological_space B] :

The continuous homomorphism given by swapping components.

Equations

The continuous homomorphism given by swapping components.

Equations

The continuous homomorphism given by multiplication.

Equations
@[simp]
theorem continuous_monoid_hom.mul_apply (E : Type u_5) [comm_group E] [topological_space E] [topological_group E] (ᾰ : E × E) :

Coproduct of two continuous homomorphisms to the same space.

Equations

Coproduct of two continuous homomorphisms to the same space.

Equations
@[simp]
theorem continuous_monoid_hom.coprod_apply {A : Type u_1} {B : Type u_2} {E : Type u_5} [monoid A] [monoid B] [comm_group E] [topological_space A] [topological_space B] [topological_space E] [topological_group E] (f : continuous_monoid_hom A E) (g : continuous_monoid_hom B E) (ᾰ : A × B) :
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]