Algebraic structures over continuous functions #
In this file we define instances of algebraic structures over the type continuous_map α β
(denoted C(α, β)
) of bundled continuous maps from α
to β
. For example, C(α, β)
is a group when β
is a group, a ring when β
is a ring, etc.
For each type of algebraic structure, we also define an appropriate subobject of α → β
with carrier { f : α → β | continuous f }
. For example, when β
is a group, a subgroup
continuous_subgroup α β
of α → β
is constructed with carrier { f : α → β | continuous f }
.
Note that, rather than using the derived algebraic structures on these subobjects
(for example, when β
is a group, the derived group structure on continuous_subgroup α β
),
one should use C(α, β)
with the appropriate instance of the structure.
Equations
- continuous_functions.set_of.has_coe_to_fun = {coe := subtype.val (λ (x : α → β), x ∈ {f : α → β | continuous f})}
Equations
Equations
Group stucture #
In this section we show that continuous functions valued in a topological group inherit the structure of a group.
The submonoid
of continuous maps α → β
.
Equations
- continuous_submonoid α β = {carrier := {f : α → β | continuous f}, one_mem' := _, mul_mem' := _}
The add_submonoid
of continuous maps α → β
.
Equations
- continuous_add_submonoid α β = {carrier := {f : α → β | continuous f}, zero_mem' := _, add_mem' := _}
The subgroup of continuous maps α → β
.
Equations
- continuous_subgroup α β = {carrier := (continuous_submonoid α β).carrier, one_mem' := _, mul_mem' := _, inv_mem' := _}
The add_subgroup
of continuous maps α → β
.
Equations
- continuous_add_subgroup α β = {carrier := (continuous_add_submonoid α β).carrier, zero_mem' := _, add_mem' := _, neg_mem' := _}
Equations
Equations
Equations
- continuous_map.add_monoid = {add := add_semigroup.add continuous_map.add_semigroup, add_assoc := _, zero := 0, zero_add := _, add_zero := _, nsmul := nsmul_rec (add_zero_class.to_has_add C(α, β)), nsmul_zero' := _, nsmul_succ' := _}
Equations
- continuous_map.monoid = {mul := semigroup.mul continuous_map.semigroup, mul_assoc := _, one := 1, one_mul := _, mul_one := _, npow := npow_rec (mul_one_class.to_has_mul C(α, β)), npow_zero' := _, npow_succ' := _}
Coercion to a function as an monoid_hom
. Similar to monoid_hom.coe_fn
.
Equations
Coercion to a function as an add_monoid_hom
. Similar to add_monoid_hom.coe_fn
.
Equations
Composition on the left by a (continuous) homomorphism of topological add_monoid
s,
as an add_monoid_hom
. Similar to add_monoid_hom.comp_left
.
Composition on the left by a (continuous) homomorphism of topological monoids, as a
monoid_hom
. Similar to monoid_hom.comp_left
.
Composition on the right as a monoid_hom
. Similar to monoid_hom.comp_hom'
.
Composition on the right as an add_monoid_hom
. Similar to
add_monoid_hom.comp_hom'
.
Equations
- continuous_map.comm_monoid = {mul := semigroup.mul continuous_map.semigroup, mul_assoc := _, one := 1, one_mul := _, mul_one := _, npow := monoid.npow._default 1 semigroup.mul continuous_map.comm_monoid._proof_4 continuous_map.comm_monoid._proof_5, npow_zero' := _, npow_succ' := _, mul_comm := _}
Equations
- continuous_map.add_comm_monoid = {add := add_semigroup.add continuous_map.add_semigroup, add_assoc := _, zero := 0, zero_add := _, add_zero := _, nsmul := add_monoid.nsmul._default 0 add_semigroup.add continuous_map.add_comm_monoid._proof_4 continuous_map.add_comm_monoid._proof_5, nsmul_zero' := _, nsmul_succ' := _, add_comm := _}
Equations
- continuous_map.add_group = {add := add_monoid.add continuous_map.add_monoid, add_assoc := _, zero := add_monoid.zero continuous_map.add_monoid, zero_add := _, add_zero := _, nsmul := add_monoid.nsmul continuous_map.add_monoid, nsmul_zero' := _, nsmul_succ' := _, neg := λ (f : C(α, β)), {to_fun := λ (x : α), -⇑f x, continuous_to_fun := _}, sub := sub_neg_monoid.sub._default add_monoid.add continuous_map.add_group._proof_7 add_monoid.zero continuous_map.add_group._proof_8 continuous_map.add_group._proof_9 add_monoid.nsmul continuous_map.add_group._proof_10 continuous_map.add_group._proof_11 (λ (f : C(α, β)), {to_fun := λ (x : α), -⇑f x, continuous_to_fun := _}), sub_eq_add_neg := _, zsmul := sub_neg_monoid.zsmul._default add_monoid.add continuous_map.add_group._proof_13 add_monoid.zero continuous_map.add_group._proof_14 continuous_map.add_group._proof_15 add_monoid.nsmul continuous_map.add_group._proof_16 continuous_map.add_group._proof_17 (λ (f : C(α, β)), {to_fun := λ (x : α), -⇑f x, continuous_to_fun := _}), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _}
Equations
- continuous_map.group = {mul := monoid.mul continuous_map.monoid, mul_assoc := _, one := monoid.one continuous_map.monoid, one_mul := _, mul_one := _, npow := monoid.npow continuous_map.monoid, npow_zero' := _, npow_succ' := _, inv := λ (f : C(α, β)), {to_fun := λ (x : α), (⇑f x)⁻¹, continuous_to_fun := _}, div := div_inv_monoid.div._default monoid.mul continuous_map.group._proof_7 monoid.one continuous_map.group._proof_8 continuous_map.group._proof_9 monoid.npow continuous_map.group._proof_10 continuous_map.group._proof_11 (λ (f : C(α, β)), {to_fun := λ (x : α), (⇑f x)⁻¹, continuous_to_fun := _}), div_eq_mul_inv := _, zpow := div_inv_monoid.zpow._default monoid.mul continuous_map.group._proof_13 monoid.one continuous_map.group._proof_14 continuous_map.group._proof_15 monoid.npow continuous_map.group._proof_16 continuous_map.group._proof_17 (λ (f : C(α, β)), {to_fun := λ (x : α), (⇑f x)⁻¹, continuous_to_fun := _}), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, mul_left_inv := _}
Equations
- continuous_map.comm_group = {mul := group.mul continuous_map.group, mul_assoc := _, one := group.one continuous_map.group, one_mul := _, mul_one := _, npow := group.npow continuous_map.group, npow_zero' := _, npow_succ' := _, inv := group.inv continuous_map.group, div := group.div continuous_map.group, div_eq_mul_inv := _, zpow := group.zpow continuous_map.group, zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, mul_left_inv := _, mul_comm := _}
Equations
- continuous_map.add_comm_group = {add := add_group.add continuous_map.add_group, add_assoc := _, zero := add_group.zero continuous_map.add_group, zero_add := _, add_zero := _, nsmul := add_group.nsmul continuous_map.add_group, nsmul_zero' := _, nsmul_succ' := _, neg := add_group.neg continuous_map.add_group, sub := add_group.sub continuous_map.add_group, sub_eq_add_neg := _, zsmul := add_group.zsmul continuous_map.add_group, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _}
Ring stucture #
In this section we show that continuous functions valued in a topological ring R
inherit
the structure of a ring.
The subsemiring of continuous maps α → β
.
Equations
- continuous_subsemiring α R = {carrier := (continuous_add_submonoid α R).carrier, one_mem' := _, mul_mem' := _, zero_mem' := _, add_mem' := _}
The subring of continuous maps α → β
.
Equations
- continuous_map.semiring = {add := add_comm_monoid.add continuous_map.add_comm_monoid, add_assoc := _, zero := add_comm_monoid.zero continuous_map.add_comm_monoid, zero_add := _, add_zero := _, nsmul := add_comm_monoid.nsmul continuous_map.add_comm_monoid, nsmul_zero' := _, nsmul_succ' := _, add_comm := _, mul := monoid.mul continuous_map.monoid, left_distrib := _, right_distrib := _, zero_mul := _, mul_zero := _, mul_assoc := _, one := monoid.one continuous_map.monoid, one_mul := _, mul_one := _, npow := monoid.npow continuous_map.monoid, npow_zero' := _, npow_succ' := _}
Equations
- continuous_map.ring = {add := semiring.add continuous_map.semiring, add_assoc := _, zero := semiring.zero continuous_map.semiring, zero_add := _, add_zero := _, nsmul := semiring.nsmul continuous_map.semiring, nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg continuous_map.add_comm_group, sub := add_comm_group.sub continuous_map.add_comm_group, sub_eq_add_neg := _, zsmul := add_comm_group.zsmul continuous_map.add_comm_group, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, mul := semiring.mul continuous_map.semiring, mul_assoc := _, one := semiring.one continuous_map.semiring, one_mul := _, mul_one := _, npow := semiring.npow continuous_map.semiring, npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _}
Equations
- continuous_map.comm_ring = {add := semiring.add continuous_map.semiring, add_assoc := _, zero := semiring.zero continuous_map.semiring, zero_add := _, add_zero := _, nsmul := semiring.nsmul continuous_map.semiring, nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg continuous_map.add_comm_group, sub := add_comm_group.sub continuous_map.add_comm_group, sub_eq_add_neg := _, zsmul := add_comm_group.zsmul continuous_map.add_comm_group, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, mul := semiring.mul continuous_map.semiring, mul_assoc := _, one := semiring.one continuous_map.semiring, one_mul := _, mul_one := _, npow := semiring.npow continuous_map.semiring, npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _, mul_comm := _}
Composition on the left by a (continuous) homomorphism of topological rings, as a ring_hom
.
Similar to ring_hom.comp_left
.
Equations
- ring_hom.comp_left_continuous α g hg = {to_fun := (monoid_hom.comp_left_continuous α g.to_monoid_hom hg).to_fun, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}
Coercion to a function as a ring_hom
.
Equations
- continuous_map.coe_fn_ring_hom = {to_fun := coe_fn continuous_map.has_coe_to_fun, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}
Semiodule stucture #
In this section we show that continuous functions valued in a topological module M
over a
topological semiring R
inherit the structure of a module.
The R
-submodule of continuous maps α → M
.
Equations
- continuous_submodule α R M = {carrier := {f : α → M | continuous f}, zero_mem' := _, add_mem' := _, smul_mem' := _}
Equations
- continuous_map.module = {to_distrib_mul_action := {to_mul_action := {to_has_scalar := {smul := has_scalar.smul continuous_map.has_scalar}, one_smul := _, mul_smul := _}, smul_add := _, smul_zero := _}, add_smul := _, zero_smul := _}
Composition on the left by a continuous linear map, as a linear_map
.
Similar to linear_map.comp_left
.
Equations
- continuous_linear_map.comp_left_continuous R α g = {to_fun := (add_monoid_hom.comp_left_continuous α g.to_linear_map.to_add_monoid_hom _).to_fun, map_add' := _, map_smul' := _}
Coercion to a function as a linear_map
.
Equations
- continuous_map.coe_fn_linear_map R = {to_fun := coe_fn continuous_map.has_coe_to_fun, map_add' := _, map_smul' := _}
Algebra structure #
In this section we show that continuous functions valued in a topological algebra A
over a ring
R
inherit the structure of an algebra. Note that the hypothesis that A
is a topological algebra
is obtained by requiring that A
be both a has_continuous_smul
and a topological_ring
.
The R
-subalgebra of continuous maps α → A
.
Equations
- continuous_subalgebra = {carrier := {f : α → A | continuous f}, one_mem' := _, mul_mem' := _, zero_mem' := _, add_mem' := _, algebra_map_mem' := _}
Continuous constant functions as a ring_hom
.
Equations
- continuous_map.C = {to_fun := λ (c : R), {to_fun := λ (x : α), ⇑(algebra_map R A) c, continuous_to_fun := _}, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}
Equations
- continuous_map.algebra = {to_has_scalar := continuous_map.has_scalar _inst_12, to_ring_hom := continuous_map.C _inst_6, commutes' := _, smul_def' := _}
Composition on the left by a (continuous) homomorphism of topological R
-algebras, as an
alg_hom
. Similar to alg_hom.comp_left
.
Equations
- alg_hom.comp_left_continuous R g hg = {to_fun := (ring_hom.comp_left_continuous α g.to_ring_hom hg).to_fun, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _, commutes' := _}
Coercion to a function as an alg_hom
.
A version of separates_points
for subalgebras of the continuous functions,
used for stating the Stone-Weierstrass theorem.
A set of continuous maps "separates points strongly" if for each pair of distinct points there is a function with specified values on them.
We give a slightly unusual formulation, where the specified values are given by some
function v
, and we ask f x = v x ∧ f y = v y
. This avoids needing a hypothesis x ≠ y
.
In fact, this definition would work perfectly well for a set of non-continuous functions, but as the only current use case is in the Stone-Weierstrass theorem, writing it this way avoids having to deal with casts inside the set. (This may need to change if we do Stone-Weierstrass on non-compact spaces, where the functions would be continuous functions vanishing at infinity.)
Working in continuous functions into a topological field, a subalgebra of functions that separates points also separates points strongly.
By the hypothesis, we can find a function f
so f x ≠ f y
.
By an affine transformation in the field we can arrange so that f x = a
and f x = b
.
Structure as module over scalar functions #
If M
is a module over R
, then we show that the space of continuous functions from α
to M
is naturally a module over the ring of continuous functions from α
to R
.
Equations
- continuous_map.module' R M = {to_distrib_mul_action := {to_mul_action := {to_has_scalar := {smul := has_scalar.smul continuous_map.has_scalar'}, one_smul := _, mul_smul := _}, smul_add := _, smul_zero := _}, add_smul := _, zero_smul := _}
We now provide formulas for f ⊓ g
and f ⊔ g
, where f g : C(α, β)
,
in terms of continuous_map.abs
.