Rigid (autonomous) monoidal categories #
This file defines rigid (autonomous) monoidal categories and the necessary theory about exact pairings and duals.
Main definitions #
exact_pairingof two objects of a monoidal category- Type classes
has_left_dualandhas_right_dualthat capture that a pairing exists - The
right_adjoint_mate fas a morphismfᘁ : Yᘁ ⟶ Xᘁfor a morphismf : X ⟶ Y - The classes of
right_rigid_category,left_rigid_categoryandrigid_category
Main statements #
comp_right_adjoint_mate: The adjoint mates of the composition is the composition of adjoint mates.
Notations #
η_andε_denote the coevaluation and evaluation morphism of an exact pairing.XᘁandᘁXdenote the right and left dual of an object, as well as the adjoint mate of a morphism.
Future work #
- Show that
X ⊗ YandYᘁ ⊗ Xᘁform an exact pairing. - Show that the left adjoint mate of the right adjoint mate of a morphism is the morphism itself.
- Simplify constructions in the case where a symmetry or braiding is present.
References #
Tags #
rigid category, monoidal category
- coevaluation : 𝟙_ C ⟶ X ⊗ Y
- evaluation : Y ⊗ X ⟶ 𝟙_ C
- coevaluation_evaluation' : (𝟙 Y ⊗ η_ X Y) ≫ (α_ Y X Y).inv ≫ (ε_ X Y ⊗ 𝟙 Y) = (ρ_ Y).hom ≫ (λ_ Y).inv . "obviously"
- evaluation_coevaluation' : (η_ X Y ⊗ 𝟙 X) ≫ (α_ X Y X).hom ≫ (𝟙 X ⊗ ε_ X Y) = (λ_ X).hom ≫ (ρ_ X).inv . "obviously"
An exact pairing is a pair of objects X Y : C which admit
a coevaluation and evaluation morphism which fulfill two triangle equalities.
Equations
- category_theory.exact_pairing_unit = {coevaluation := (ρ_ (𝟙_ C)).inv, evaluation := (ρ_ (𝟙_ C)).hom, coevaluation_evaluation' := _, evaluation_coevaluation' := _}
- right_dual : C
- exact : category_theory.exact_pairing X Xᘁ
A class of objects which have a right dual.
- left_dual : C
- exact : category_theory.exact_pairing ᘁY Y
A class of objects with have a left dual.
The right adjoint mate fᘁ : Xᘁ ⟶ Yᘁ of a morphism f : X ⟶ Y.
The left adjoint mate ᘁf : ᘁY ⟶ ᘁX of a morphism f : X ⟶ Y.
The composition of right adjoint mates is the adjoint mate of the composition.
The composition of left adjoint mates is the adjoint mate of the composition.
Right duals are isomorphic.
Equations
- category_theory.right_dual_iso _x _x_1 = {hom := (𝟙 X)ᘁ, inv := (𝟙 X)ᘁ, hom_inv_id' := _, inv_hom_id' := _}
Left duals are isomorphic.
Equations
- category_theory.left_dual_iso p₁ p₂ = {hom := ᘁ(𝟙 Y), inv := ᘁ(𝟙 Y), hom_inv_id' := _, inv_hom_id' := _}
- right_dual : Π (X : C), category_theory.has_right_dual X
A right rigid monoidal category is one in which every object has a right dual.
- left_dual : Π (X : C), category_theory.has_left_dual X
A left rigid monoidal category is one in which every object has a right dual.
- to_right_rigid_category : category_theory.right_rigid_category C
- to_left_rigid_category : category_theory.left_rigid_category C
A rigid monoidal category is a monoidal category which is left rigid and right rigid.