The unit interval, as a topological space #
Use open_locale unit_interval
to turn on the notation I := set.Icc (0 : ℝ) (1 : ℝ)
.
We provide basic instances, as well as a custom tactic for discharging
0 ≤ ↑x
, 0 ≤ 1 - ↑x
, ↑x ≤ 1
, and 1 - ↑x ≤ 1
when x : I
.
The unit interval #
@[protected, instance]
Equations
- unit_interval.has_zero = {zero := ⟨0, unit_interval.has_zero._proof_1⟩}
@[protected, instance]
Equations
- unit_interval.has_one = {one := ⟨1, unit_interval.has_one._proof_1⟩}
@[protected, instance]
Equations
- unit_interval.has_mul = {mul := λ (x y : ↥unit_interval), ⟨(↑x) * ↑y, _⟩}
Unit interval central symmetry.
Equations
- unit_interval.symm = λ (t : ↥unit_interval), ⟨1 - t.val, _⟩
@[simp]
@[simp]
like unit_interval.nonneg
, but with the inequality in I
.
like unit_interval.le_one
, but with the inequality in I
.
theorem
affine_homeomorph_image_I
{𝕜 : Type u_1}
[linear_ordered_field 𝕜]
[topological_space 𝕜]
[topological_ring 𝕜]
(a b : 𝕜)
(h : 0 < a) :
The image of [0,1]
under the homeomorphism λ x, a * x + b
is [b, a+b]
.
def
Icc_homeo_I
{𝕜 : Type u_1}
[linear_ordered_field 𝕜]
[topological_space 𝕜]
[topological_ring 𝕜]
(a b : 𝕜)
(h : a < b) :
The affine homeomorphism from a nontrivial interval [a,b]
to [0,1]
.
Equations
- Icc_homeo_I a b h = let e : ↥(set.Icc 0 1) ≃ₜ ↥(⇑(affine_homeomorph (b - a) a _) '' set.Icc 0 1) := (affine_homeomorph (b - a) a _).image (set.Icc 0 1) in (e.trans (homeomorph.set_congr _)).symm
@[simp]
theorem
Icc_homeo_I_apply_coe
{𝕜 : Type u_1}
[linear_ordered_field 𝕜]
[topological_space 𝕜]
[topological_ring 𝕜]
(a b : 𝕜)
(h : a < b)
(x : ↥(set.Icc a b)) :
@[simp]
theorem
Icc_homeo_I_symm_apply_coe
{𝕜 : Type u_1}
[linear_ordered_field 𝕜]
[topological_space 𝕜]
[topological_ring 𝕜]
(a b : 𝕜)
(h : a < b)
(x : ↥(set.Icc 0 1)) :