Continuous affine maps. #
This file defines a type of bundled continuous affine maps.
Note that the definition and basic properties established here require minimal assumptions, and do not even assume compatibility between the topological and algebraic structures. Of course it is necessary to assume some compatibility in order to obtain a useful theory. Such a theory is developed elsewhere for affine spaces modelled on normed vector spaces, but not yet for general topological affine spaces (since we have not defined these yet).
Main definitions: #
Notation: #
We introduce the notation P →A[R] Q
for continuous_affine_map R P Q
. Note that this is parallel
to the notation E →L[R] F
for continuous_linear_map R E F
.
- to_affine_map : P →ᵃ[R] Q
- cont : continuous self.to_affine_map.to_fun
A continuous map of affine spaces.
Equations
- continuous_affine_map.has_coe_to_fun = {coe := λ (f : P →A[R] Q), f.to_affine_map.to_fun}
Equations
Forgetting its algebraic properties, a continuous affine map is a continuous map.
Equations
- f.to_continuous_map = {to_fun := ⇑f, continuous_to_fun := _}
Equations
The constant map is a continuous affine map.
Equations
- continuous_affine_map.const R P q = {to_affine_map := {to_fun := ⇑(affine_map.const R P q), linear := (affine_map.const R P q).linear, map_vadd' := _}, cont := _}
Equations
- continuous_affine_map.inhabited R P = {default := continuous_affine_map.const R P continuous_affine_map.inhabited._proof_1.some}
The composition of morphisms is a morphism.
Equations
Equations
- continuous_affine_map.add_comm_group = {add := has_add.add continuous_affine_map.has_add, add_assoc := _, zero := 0, zero_add := _, add_zero := _, nsmul := add_comm_group.nsmul (function.injective.add_comm_group coe_fn continuous_affine_map.add_comm_group._proof_4 continuous_affine_map.coe_zero continuous_affine_map.coe_add continuous_affine_map.coe_neg continuous_affine_map.coe_sub), nsmul_zero' := _, nsmul_succ' := _, neg := has_neg.neg continuous_affine_map.has_neg, sub := has_sub.sub continuous_affine_map.has_sub, sub_eq_add_neg := _, zsmul := add_comm_group.zsmul (function.injective.add_comm_group coe_fn continuous_affine_map.add_comm_group._proof_4 continuous_affine_map.coe_zero continuous_affine_map.coe_add continuous_affine_map.coe_neg continuous_affine_map.coe_sub), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _}
Equations
- continuous_affine_map.module = function.injective.module S {to_fun := λ (f : P →A[S] W), f.to_affine_map.to_fun, map_zero' := _, map_add' := _} continuous_affine_map.module._proof_3 continuous_affine_map.coe_smul
A continuous linear map can be regarded as a continuous affine map.