mathlib documentation

analysis.normed.group.pointwise

Properties of pointwise addition of sets in normed groups. #

We explore the relationships between pointwise addition of sets in normed groups, and the norm. Notably, we show that the sum of bounded sets remain bounded.

theorem bounded_iff_exists_norm_le {E : Type u_1} [semi_normed_group E] {s : set E} :
metric.bounded s ∃ (R : ), ∀ (x : E), x sx R
theorem metric.bounded.exists_norm_le {E : Type u_1} [semi_normed_group E] {s : set E} :
metric.bounded s(∃ (R : ), ∀ (x : E), x sx R)

Alias of bounded_iff_exists_norm_le.

theorem metric.bounded.exists_pos_norm_le {E : Type u_1} [semi_normed_group E] {s : set E} (hs : metric.bounded s) :
∃ (R : ) (H : R > 0), ∀ (x : E), x sx R
theorem metric.bounded.add {E : Type u_1} [semi_normed_group E] {s t : set E} (hs : metric.bounded s) (ht : metric.bounded t) :
@[simp]
theorem singleton_add_ball {E : Type u_1} [semi_normed_group E] (x y : E) (r : ) :
{x} + metric.ball y r = metric.ball (x + y) r
@[simp]
theorem ball_add_singleton {E : Type u_1} [semi_normed_group E] (x y : E) (r : ) :
metric.ball x r + {y} = metric.ball (x + y) r
theorem singleton_add_ball_zero {E : Type u_1} [semi_normed_group E] (x : E) (r : ) :
theorem ball_zero_add_singleton {E : Type u_1} [semi_normed_group E] (x : E) (r : ) :
@[simp]
theorem singleton_add_closed_ball {E : Type u_1} [semi_normed_group E] (x y : E) (r : ) :
@[simp]
theorem closed_ball_add_singleton {E : Type u_1} [semi_normed_group E] (x y : E) (r : ) :
theorem singleton_add_closed_ball_zero {E : Type u_1} [semi_normed_group E] (x : E) (r : ) :
theorem closed_ball_zero_add_singleton {E : Type u_1} [semi_normed_group E] (x : E) (r : ) :
theorem is_compact.cthickening_eq_add_closed_ball {E : Type u_1} [semi_normed_group E] {s : set E} (hs : is_compact s) {r : } (hr : 0 r) :