Category of partial orders #
This defines PartialOrder
, the category of partial orders with monotone maps.
The category of partially ordered types.
Equations
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
Construct a bundled PartialOrder from the underlying type and typeclass.
Equations
@[protected, instance]
@[protected, instance]
Equations
- α.partial_order = α.str
@[simp]
theorem
PartialOrder.iso.mk_hom
{α β : PartialOrder}
(e : ↥α ≃o ↥β) :
(PartialOrder.iso.mk e).hom = ↑e
Constructs an equivalence between partial orders from an order isomorphism between them.
Equations
- PartialOrder.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
theorem
PartialOrder.iso.mk_inv
{α β : PartialOrder}
(e : ↥α ≃o ↥β) :
(PartialOrder.iso.mk e).inv = ↑(e.symm)
order_dual
as a functor.
Equations
- PartialOrder.to_dual = {obj := λ (X : PartialOrder), PartialOrder.of (order_dual ↥X), map := λ (X Y : PartialOrder), ⇑order_hom.dual, map_id' := PartialOrder.to_dual._proof_1, map_comp' := PartialOrder.to_dual._proof_2}
@[simp]
@[simp]
@[simp]
The equivalence between PartialOrder
and itself induced by order_dual
both ways.
Equations
- PartialOrder.dual_equiv = category_theory.equivalence.mk PartialOrder.to_dual PartialOrder.to_dual (category_theory.nat_iso.of_components (λ (X : PartialOrder), PartialOrder.iso.mk (order_iso.dual_dual ↥X)) PartialOrder.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : PartialOrder), PartialOrder.iso.mk (order_iso.dual_dual ↥X)) PartialOrder.dual_equiv._proof_2)
@[simp]