The circle #
This file defines circle
to be the metric sphere (metric.sphere
) in ℂ
centred at 0
of
radius 1
. We equip it with the following structure:
- a submonoid of
ℂ
- a group
- a topological group
We furthermore define exp_map_circle
to be the natural map λ t, exp (t * I)
from ℝ
to
circle
, and show that this map is a group homomorphism.
Implementation notes #
Because later (in geometry.manifold.instances.sphere
) one wants to equip the circle with a smooth
manifold structure borrowed from metric.sphere
, the underlying set is
{z : ℂ | abs (z - 0) = 1}
. This prevents certain algebraic facts from working definitionally --
for example, the circle is not defeq to {z : ℂ | abs z = 1}
, which is the kernel of complex.abs
considered as a homomorphism from ℂ
to ℝ
, nor is it defeq to {z : ℂ | norm_sq z = 1}
, which
is the kernel of the homomorphism complex.norm_sq
from ℂ
to ℝ
.
Equations
- circle.comm_group = {mul := comm_monoid.mul circle.to_comm_monoid, mul_assoc := circle.comm_group._proof_1, one := comm_monoid.one circle.to_comm_monoid, one_mul := circle.comm_group._proof_2, mul_one := circle.comm_group._proof_3, npow := comm_monoid.npow circle.to_comm_monoid, npow_zero' := circle.comm_group._proof_4, npow_succ' := circle.comm_group._proof_5, inv := λ (z : ↥circle), ⟨⇑conj ↑z, _⟩, div := group.div._default comm_monoid.mul circle.comm_group._proof_7 comm_monoid.one circle.comm_group._proof_8 circle.comm_group._proof_9 comm_monoid.npow circle.comm_group._proof_10 circle.comm_group._proof_11 (λ (z : ↥circle), ⟨⇑conj ↑z, _⟩), div_eq_mul_inv := circle.comm_group._proof_12, zpow := group.zpow._default comm_monoid.mul circle.comm_group._proof_13 comm_monoid.one circle.comm_group._proof_14 circle.comm_group._proof_15 comm_monoid.npow circle.comm_group._proof_16 circle.comm_group._proof_17 (λ (z : ↥circle), ⟨⇑conj ↑z, _⟩), zpow_zero' := circle.comm_group._proof_18, zpow_succ' := circle.comm_group._proof_19, zpow_neg' := circle.comm_group._proof_20, mul_left_inv := circle.comm_group._proof_21, mul_comm := circle.comm_group._proof_22}
The map λ t, exp (t * I)
from ℝ
to the unit circle in ℂ
.
Equations
- exp_map_circle = {to_fun := λ (t : ℝ), ⟨complex.exp ((↑t) * complex.I), _⟩, continuous_to_fun := exp_map_circle._proof_2}
The map λ t, exp (t * I)
from ℝ
to the unit circle in ℂ
, considered as a homomorphism of
groups.