ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2 GIF version

Theorem bcn2 9691
Description: Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))

Proof of Theorem bcn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 8193 . . 3 2 ∈ ℕ
2 ibcval5 9690 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I , ℂ)‘𝑁) / (!‘2)))
31, 2mpan2 415 . 2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I , ℂ)‘𝑁) / (!‘2)))
4 2m1e1 8156 . . . . . . . 8 (2 − 1) = 1
54oveq2i 5543 . . . . . . 7 ((𝑁 − 2) + (2 − 1)) = ((𝑁 − 2) + 1)
6 nn0cn 8298 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
7 2cn 8110 . . . . . . . . 9 2 ∈ ℂ
8 ax-1cn 7069 . . . . . . . . 9 1 ∈ ℂ
9 npncan 7329 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
107, 8, 9mp3an23 1260 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
116, 10syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
125, 11syl5eqr 2127 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + 1) = (𝑁 − 1))
13 iseqeq1 9434 . . . . . 6 (((𝑁 − 2) + 1) = (𝑁 − 1) → seq((𝑁 − 2) + 1)( · , I , ℂ) = seq(𝑁 − 1)( · , I , ℂ))
1412, 13syl 14 . . . . 5 (𝑁 ∈ ℕ0 → seq((𝑁 − 2) + 1)( · , I , ℂ) = seq(𝑁 − 1)( · , I , ℂ))
1514fveq1d 5200 . . . 4 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I , ℂ)‘𝑁) = (seq(𝑁 − 1)( · , I , ℂ)‘𝑁))
16 nn0z 8371 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
17 peano2zm 8389 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1816, 17syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
19 uzid 8633 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
2016, 19syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
21 npcan 7317 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
226, 8, 21sylancl 404 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁)
2322fveq2d 5202 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
2420, 23eleqtrrd 2158 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
25 cnex 7097 . . . . . . . 8 ℂ ∈ V
2625a1i 9 . . . . . . 7 (𝑁 ∈ ℕ0 → ℂ ∈ V)
27 eluzelcn 8630 . . . . . . . . 9 (𝑥 ∈ (ℤ‘(𝑁 − 1)) → 𝑥 ∈ ℂ)
2827adantl 271 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ (ℤ‘(𝑁 − 1))) → 𝑥 ∈ ℂ)
29 fvi 5251 . . . . . . . . . 10 (𝑥 ∈ ℂ → ( I ‘𝑥) = 𝑥)
3029eleq1d 2147 . . . . . . . . 9 (𝑥 ∈ ℂ → (( I ‘𝑥) ∈ ℂ ↔ 𝑥 ∈ ℂ))
3130ibir 175 . . . . . . . 8 (𝑥 ∈ ℂ → ( I ‘𝑥) ∈ ℂ)
3228, 31syl 14 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ (ℤ‘(𝑁 − 1))) → ( I ‘𝑥) ∈ ℂ)
33 mulcl 7100 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
3433adantl 271 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
3518, 24, 26, 32, 34iseqm1 9447 . . . . . 6 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I , ℂ)‘𝑁) = ((seq(𝑁 − 1)( · , I , ℂ)‘(𝑁 − 1)) · ( I ‘𝑁)))
3618, 26, 32, 34iseq1 9442 . . . . . . . 8 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I , ℂ)‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
37 fvi 5251 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3818, 37syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3936, 38eqtrd 2113 . . . . . . 7 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I , ℂ)‘(𝑁 − 1)) = (𝑁 − 1))
40 fvi 5251 . . . . . . 7 (𝑁 ∈ ℕ0 → ( I ‘𝑁) = 𝑁)
4139, 40oveq12d 5550 . . . . . 6 (𝑁 ∈ ℕ0 → ((seq(𝑁 − 1)( · , I , ℂ)‘(𝑁 − 1)) · ( I ‘𝑁)) = ((𝑁 − 1) · 𝑁))
4235, 41eqtrd 2113 . . . . 5 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I , ℂ)‘𝑁) = ((𝑁 − 1) · 𝑁))
43 subcl 7307 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
446, 8, 43sylancl 404 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
4544, 6mulcomd 7140 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) · 𝑁) = (𝑁 · (𝑁 − 1)))
4642, 45eqtrd 2113 . . . 4 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I , ℂ)‘𝑁) = (𝑁 · (𝑁 − 1)))
4715, 46eqtrd 2113 . . 3 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I , ℂ)‘𝑁) = (𝑁 · (𝑁 − 1)))
48 fac2 9658 . . . 4 (!‘2) = 2
4948a1i 9 . . 3 (𝑁 ∈ ℕ0 → (!‘2) = 2)
5047, 49oveq12d 5550 . 2 (𝑁 ∈ ℕ0 → ((seq((𝑁 − 2) + 1)( · , I , ℂ)‘𝑁) / (!‘2)) = ((𝑁 · (𝑁 − 1)) / 2))
513, 50eqtrd 2113 1 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  Vcvv 2601   I cid 4043  cfv 4922  (class class class)co 5532  cc 6979  1c1 6982   + caddc 6984   · cmul 6986  cmin 7279   / cdiv 7760  cn 8039  2c2 8089  0cn0 8288  cz 8351  cuz 8619  seqcseq 9431  !cfa 9652  Ccbc 9674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-fz 9030  df-iseq 9432  df-fac 9653  df-bc 9675
This theorem is referenced by:  bcp1m1  9692
  Copyright terms: Public domain W3C validator