![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdssqlem | GIF version |
Description: Lemma for dvdssq 10420. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
dvdssqlem | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 8370 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
2 | nnz 8370 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | dvdssqim 10413 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) | |
4 | 1, 2, 3 | syl2an 283 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) |
5 | sqgcd 10418 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) | |
6 | 5 | adantr 270 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) |
7 | nnsqcl 9545 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ) | |
8 | nnsqcl 9545 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ) | |
9 | gcdeq 10412 | . . . . . . . 8 ⊢ (((𝑀↑2) ∈ ℕ ∧ (𝑁↑2) ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) | |
10 | 7, 8, 9 | syl2an 283 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2) ↔ (𝑀↑2) ∥ (𝑁↑2))) |
11 | 10 | biimpar 291 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀↑2) gcd (𝑁↑2)) = (𝑀↑2)) |
12 | 6, 11 | eqtrd 2113 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁)↑2) = (𝑀↑2)) |
13 | gcdcl 10358 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | |
14 | 1, 2, 13 | syl2an 283 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ0) |
15 | 14 | nn0red 8342 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ) |
16 | 14 | nn0ge0d 8344 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝑀 gcd 𝑁)) |
17 | nnre 8046 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
18 | 17 | adantr 270 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ) |
19 | nnnn0 8295 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
20 | 19 | nn0ge0d 8344 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 0 ≤ 𝑀) |
21 | 20 | adantr 270 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑀) |
22 | sq11 9548 | . . . . . . 7 ⊢ ((((𝑀 gcd 𝑁) ∈ ℝ ∧ 0 ≤ (𝑀 gcd 𝑁)) ∧ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) | |
23 | 15, 16, 18, 21, 22 | syl22anc 1170 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
24 | 23 | adantr 270 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (((𝑀 gcd 𝑁)↑2) = (𝑀↑2) ↔ (𝑀 gcd 𝑁) = 𝑀)) |
25 | 12, 24 | mpbid 145 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) = 𝑀) |
26 | gcddvds 10355 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | |
27 | 1, 2, 26 | syl2an 283 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
28 | 27 | adantr 270 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
29 | 28 | simprd 112 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → (𝑀 gcd 𝑁) ∥ 𝑁) |
30 | 25, 29 | eqbrtrrd 3807 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀↑2) ∥ (𝑁↑2)) → 𝑀 ∥ 𝑁) |
31 | 30 | ex 113 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∥ (𝑁↑2) → 𝑀 ∥ 𝑁)) |
32 | 4, 31 | impbid 127 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 (class class class)co 5532 ℝcr 6980 0cc0 6981 ≤ cle 7154 ℕcn 8039 2c2 8089 ℕ0cn0 8288 ℤcz 8351 ↑cexp 9475 ∥ cdvds 10195 gcd cgcd 10338 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-sup 6397 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-fz 9030 df-fzo 9153 df-fl 9274 df-mod 9325 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-dvds 10196 df-gcd 10339 |
This theorem is referenced by: dvdssq 10420 |
Copyright terms: Public domain | W3C validator |