ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem2d GIF version

Theorem nn0opthlem2d 9648
Description: Lemma for nn0opth2 9651. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1 (𝜑𝐴 ∈ ℕ0)
nn0opthd.2 (𝜑𝐵 ∈ ℕ0)
nn0opthd.3 (𝜑𝐶 ∈ ℕ0)
nn0opthd.4 (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
nn0opthlem2d (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))

Proof of Theorem nn0opthlem2d
StepHypRef Expression
1 nn0opthd.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ0)
2 nn0opthd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ0)
31, 2nn0addcld 8345 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℕ0)
43nn0red 8342 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54, 4remulcld 7149 . . . . 5 (𝜑 → ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ)
62nn0red 8342 . . . . 5 (𝜑𝐵 ∈ ℝ)
75, 6readdcld 7148 . . . 4 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
87adantr 270 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ)
9 nn0opthd.3 . . . . . . 7 (𝜑𝐶 ∈ ℕ0)
109nn0red 8342 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1110, 10remulcld 7149 . . . . 5 (𝜑 → (𝐶 · 𝐶) ∈ ℝ)
1211adantr 270 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ∈ ℝ)
13 nn0opthd.4 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1413nn0red 8342 . . . . . 6 (𝜑𝐷 ∈ ℝ)
1511, 14readdcld 7148 . . . . 5 (𝜑 → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
1615adantr 270 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ∈ ℝ)
17 2re 8109 . . . . . . . . 9 2 ∈ ℝ
1817a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
1918, 4remulcld 7149 . . . . . . 7 (𝜑 → (2 · (𝐴 + 𝐵)) ∈ ℝ)
205, 19readdcld 7148 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
2120adantr 270 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ)
22 nn0addge2 8335 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ0) → 𝐵 ≤ (𝐴 + 𝐵))
236, 1, 22syl2anc 403 . . . . . . . 8 (𝜑𝐵 ≤ (𝐴 + 𝐵))
24 nn0addge1 8334 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℕ0) → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
254, 3, 24syl2anc 403 . . . . . . . . 9 (𝜑 → (𝐴 + 𝐵) ≤ ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
264recnd 7147 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
27262timesd 8273 . . . . . . . . 9 (𝜑 → (2 · (𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + 𝐵)))
2825, 27breqtrrd 3811 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) ≤ (2 · (𝐴 + 𝐵)))
296, 4, 19, 23, 28letrd 7233 . . . . . . 7 (𝜑𝐵 ≤ (2 · (𝐴 + 𝐵)))
306, 19, 5, 29leadd2dd 7660 . . . . . 6 (𝜑 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
3130adantr 270 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
323, 9nn0opthlem1d 9647 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)))
3332biimpa 290 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶))
348, 21, 12, 31, 33lelttrd 7234 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
35 nn0addge1 8334 . . . . . 6 (((𝐶 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℕ0) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3611, 13, 35syl2anc 403 . . . . 5 (𝜑 → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
3736adantr 270 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷))
388, 12, 16, 34, 37ltletrd 7527 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
398, 38gtned 7223 . 2 ((𝜑 ∧ (𝐴 + 𝐵) < 𝐶) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
4039ex 113 1 (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  wne 2245   class class class wbr 3785  (class class class)co 5532  cr 6980   + caddc 6984   · cmul 6986   < clt 7153  cle 7154  2c2 8089  0cn0 8288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  nn0opthd  9649
  Copyright terms: Public domain W3C validator