| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgle | Structured version Visualization version Unicode version | ||
| Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgle.1 |
|
| itgle.2 |
|
| itgle.3 |
|
| itgle.4 |
|
| itgle.5 |
|
| Ref | Expression |
|---|---|
| itgle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgle.1 |
. . . . 5
| |
| 2 | itgle.3 |
. . . . . 6
| |
| 3 | 2 | iblrelem 23557 |
. . . . 5
|
| 4 | 1, 3 | mpbid 222 |
. . . 4
|
| 5 | 4 | simp2d 1074 |
. . 3
|
| 6 | itgle.2 |
. . . . 5
| |
| 7 | itgle.4 |
. . . . . 6
| |
| 8 | 7 | iblrelem 23557 |
. . . . 5
|
| 9 | 6, 8 | mpbid 222 |
. . . 4
|
| 10 | 9 | simp3d 1075 |
. . 3
|
| 11 | 9 | simp2d 1074 |
. . 3
|
| 12 | 4 | simp3d 1075 |
. . 3
|
| 13 | 2 | ad2ant2r 783 |
. . . . . . . 8
|
| 14 | 13 | rexrd 10089 |
. . . . . . 7
|
| 15 | simprr 796 |
. . . . . . 7
| |
| 16 | elxrge0 12281 |
. . . . . . 7
| |
| 17 | 14, 15, 16 | sylanbrc 698 |
. . . . . 6
|
| 18 | 0e0iccpnf 12283 |
. . . . . . 7
| |
| 19 | 18 | a1i 11 |
. . . . . 6
|
| 20 | 17, 19 | ifclda 4120 |
. . . . 5
|
| 21 | eqid 2622 |
. . . . 5
| |
| 22 | 20, 21 | fmptd 6385 |
. . . 4
|
| 23 | 7 | ad2ant2r 783 |
. . . . . . . 8
|
| 24 | 23 | rexrd 10089 |
. . . . . . 7
|
| 25 | simprr 796 |
. . . . . . 7
| |
| 26 | elxrge0 12281 |
. . . . . . 7
| |
| 27 | 24, 25, 26 | sylanbrc 698 |
. . . . . 6
|
| 28 | 18 | a1i 11 |
. . . . . 6
|
| 29 | 27, 28 | ifclda 4120 |
. . . . 5
|
| 30 | eqid 2622 |
. . . . 5
| |
| 31 | 29, 30 | fmptd 6385 |
. . . 4
|
| 32 | 0re 10040 |
. . . . . . . . . . . 12
| |
| 33 | max1 12016 |
. . . . . . . . . . . 12
| |
| 34 | 32, 7, 33 | sylancr 695 |
. . . . . . . . . . 11
|
| 35 | ifcl 4130 |
. . . . . . . . . . . . 13
| |
| 36 | 7, 32, 35 | sylancl 694 |
. . . . . . . . . . . 12
|
| 37 | itgle.5 |
. . . . . . . . . . . 12
| |
| 38 | max2 12018 |
. . . . . . . . . . . . 13
| |
| 39 | 32, 7, 38 | sylancr 695 |
. . . . . . . . . . . 12
|
| 40 | 2, 7, 36, 37, 39 | letrd 10194 |
. . . . . . . . . . 11
|
| 41 | 32 | a1i 11 |
. . . . . . . . . . . 12
|
| 42 | maxle 12022 |
. . . . . . . . . . . 12
| |
| 43 | 41, 2, 36, 42 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 44 | 34, 40, 43 | mpbir2and 957 |
. . . . . . . . . 10
|
| 45 | iftrue 4092 |
. . . . . . . . . . 11
| |
| 46 | 45 | adantl 482 |
. . . . . . . . . 10
|
| 47 | iftrue 4092 |
. . . . . . . . . . 11
| |
| 48 | 47 | adantl 482 |
. . . . . . . . . 10
|
| 49 | 44, 46, 48 | 3brtr4d 4685 |
. . . . . . . . 9
|
| 50 | 49 | ex 450 |
. . . . . . . 8
|
| 51 | 0le0 11110 |
. . . . . . . . . 10
| |
| 52 | 51 | a1i 11 |
. . . . . . . . 9
|
| 53 | iffalse 4095 |
. . . . . . . . 9
| |
| 54 | iffalse 4095 |
. . . . . . . . 9
| |
| 55 | 52, 53, 54 | 3brtr4d 4685 |
. . . . . . . 8
|
| 56 | 50, 55 | pm2.61d1 171 |
. . . . . . 7
|
| 57 | ifan 4134 |
. . . . . . 7
| |
| 58 | ifan 4134 |
. . . . . . 7
| |
| 59 | 56, 57, 58 | 3brtr4g 4687 |
. . . . . 6
|
| 60 | 59 | ralrimivw 2967 |
. . . . 5
|
| 61 | reex 10027 |
. . . . . . 7
| |
| 62 | 61 | a1i 11 |
. . . . . 6
|
| 63 | eqidd 2623 |
. . . . . 6
| |
| 64 | eqidd 2623 |
. . . . . 6
| |
| 65 | 62, 20, 29, 63, 64 | ofrfval2 6915 |
. . . . 5
|
| 66 | 60, 65 | mpbird 247 |
. . . 4
|
| 67 | itg2le 23506 |
. . . 4
| |
| 68 | 22, 31, 66, 67 | syl3anc 1326 |
. . 3
|
| 69 | 7 | renegcld 10457 |
. . . . . . . . 9
|
| 70 | 69 | ad2ant2r 783 |
. . . . . . . 8
|
| 71 | 70 | rexrd 10089 |
. . . . . . 7
|
| 72 | simprr 796 |
. . . . . . 7
| |
| 73 | elxrge0 12281 |
. . . . . . 7
| |
| 74 | 71, 72, 73 | sylanbrc 698 |
. . . . . 6
|
| 75 | 18 | a1i 11 |
. . . . . 6
|
| 76 | 74, 75 | ifclda 4120 |
. . . . 5
|
| 77 | eqid 2622 |
. . . . 5
| |
| 78 | 76, 77 | fmptd 6385 |
. . . 4
|
| 79 | 2 | renegcld 10457 |
. . . . . . . . 9
|
| 80 | 79 | ad2ant2r 783 |
. . . . . . . 8
|
| 81 | 80 | rexrd 10089 |
. . . . . . 7
|
| 82 | simprr 796 |
. . . . . . 7
| |
| 83 | elxrge0 12281 |
. . . . . . 7
| |
| 84 | 81, 82, 83 | sylanbrc 698 |
. . . . . 6
|
| 85 | 18 | a1i 11 |
. . . . . 6
|
| 86 | 84, 85 | ifclda 4120 |
. . . . 5
|
| 87 | eqid 2622 |
. . . . 5
| |
| 88 | 86, 87 | fmptd 6385 |
. . . 4
|
| 89 | max1 12016 |
. . . . . . . . . . . 12
| |
| 90 | 32, 79, 89 | sylancr 695 |
. . . . . . . . . . 11
|
| 91 | ifcl 4130 |
. . . . . . . . . . . . 13
| |
| 92 | 79, 32, 91 | sylancl 694 |
. . . . . . . . . . . 12
|
| 93 | 2, 7 | lenegd 10606 |
. . . . . . . . . . . . 13
|
| 94 | 37, 93 | mpbid 222 |
. . . . . . . . . . . 12
|
| 95 | max2 12018 |
. . . . . . . . . . . . 13
| |
| 96 | 32, 79, 95 | sylancr 695 |
. . . . . . . . . . . 12
|
| 97 | 69, 79, 92, 94, 96 | letrd 10194 |
. . . . . . . . . . 11
|
| 98 | maxle 12022 |
. . . . . . . . . . . 12
| |
| 99 | 41, 69, 92, 98 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 100 | 90, 97, 99 | mpbir2and 957 |
. . . . . . . . . 10
|
| 101 | iftrue 4092 |
. . . . . . . . . . 11
| |
| 102 | 101 | adantl 482 |
. . . . . . . . . 10
|
| 103 | iftrue 4092 |
. . . . . . . . . . 11
| |
| 104 | 103 | adantl 482 |
. . . . . . . . . 10
|
| 105 | 100, 102, 104 | 3brtr4d 4685 |
. . . . . . . . 9
|
| 106 | 105 | ex 450 |
. . . . . . . 8
|
| 107 | iffalse 4095 |
. . . . . . . . 9
| |
| 108 | iffalse 4095 |
. . . . . . . . 9
| |
| 109 | 52, 107, 108 | 3brtr4d 4685 |
. . . . . . . 8
|
| 110 | 106, 109 | pm2.61d1 171 |
. . . . . . 7
|
| 111 | ifan 4134 |
. . . . . . 7
| |
| 112 | ifan 4134 |
. . . . . . 7
| |
| 113 | 110, 111, 112 | 3brtr4g 4687 |
. . . . . 6
|
| 114 | 113 | ralrimivw 2967 |
. . . . 5
|
| 115 | eqidd 2623 |
. . . . . 6
| |
| 116 | eqidd 2623 |
. . . . . 6
| |
| 117 | 62, 76, 86, 115, 116 | ofrfval2 6915 |
. . . . 5
|
| 118 | 114, 117 | mpbird 247 |
. . . 4
|
| 119 | itg2le 23506 |
. . . 4
| |
| 120 | 78, 88, 118, 119 | syl3anc 1326 |
. . 3
|
| 121 | 5, 10, 11, 12, 68, 120 | le2subd 10647 |
. 2
|
| 122 | 2, 1 | itgrevallem1 23561 |
. 2
|
| 123 | 7, 6 | itgrevallem1 23561 |
. 2
|
| 124 | 121, 122, 123 | 3brtr4d 4685 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-xmet 19739 df-met 19740 df-ovol 23233 df-vol 23234 df-mbf 23388 df-itg1 23389 df-itg2 23390 df-ibl 23391 df-itg 23392 df-0p 23437 |
| This theorem is referenced by: itgge0 23577 itgless 23583 itgabs 23601 itgulm 24162 itgabsnc 33479 wallispilem1 40282 fourierdlem47 40370 fourierdlem87 40410 etransclem23 40474 |
| Copyright terms: Public domain | W3C validator |