MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzrngunit Structured version   Visualization version   Unicode version

Theorem gzrngunit 19812
Description: The units on  ZZ [
_i ] are the gaussian integers with norm  1. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
gzrng.1  |-  Z  =  (flds  ZZ[_i] )
Assertion
Ref Expression
gzrngunit  |-  ( A  e.  (Unit `  Z
)  <->  ( A  e.  ZZ[_i]  /\  ( abs `  A
)  =  1 ) )

Proof of Theorem gzrngunit
StepHypRef Expression
1 gzsubrg 19800 . . . . 5  |-  ZZ[_i]  e.  (SubRing ` fld )
2 gzrng.1 . . . . . 6  |-  Z  =  (flds  ZZ[_i] )
32subrgbas 18789 . . . . 5  |-  ( ZZ[_i]  e.  (SubRing ` fld )  ->  ZZ[_i]  =  ( Base `  Z ) )
41, 3ax-mp 5 . . . 4  |-  ZZ[_i]  =  ( Base `  Z )
5 eqid 2622 . . . 4  |-  (Unit `  Z )  =  (Unit `  Z )
64, 5unitcl 18659 . . 3  |-  ( A  e.  (Unit `  Z
)  ->  A  e.  ZZ[_i] )
7 eqid 2622 . . . . . . . . . . . 12  |-  ( invr ` fld )  =  ( invr ` fld )
8 eqid 2622 . . . . . . . . . . . 12  |-  ( invr `  Z )  =  (
invr `  Z )
92, 7, 5, 8subrginv 18796 . . . . . . . . . . 11  |-  ( ( ZZ[_i] 
e.  (SubRing ` fld )  /\  A  e.  (Unit `  Z )
)  ->  ( ( invr ` fld ) `  A )  =  ( ( invr `  Z ) `  A
) )
101, 9mpan 706 . . . . . . . . . 10  |-  ( A  e.  (Unit `  Z
)  ->  ( ( invr ` fld ) `  A )  =  ( ( invr `  Z ) `  A
) )
11 gzcn 15636 . . . . . . . . . . . 12  |-  ( A  e.  ZZ[_i]  ->  A  e.  CC )
126, 11syl 17 . . . . . . . . . . 11  |-  ( A  e.  (Unit `  Z
)  ->  A  e.  CC )
13 0red 10041 . . . . . . . . . . . . . 14  |-  ( A  e.  (Unit `  Z
)  ->  0  e.  RR )
14 1re 10039 . . . . . . . . . . . . . . 15  |-  1  e.  RR
1514a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  (Unit `  Z
)  ->  1  e.  RR )
1612abscld 14175 . . . . . . . . . . . . . 14  |-  ( A  e.  (Unit `  Z
)  ->  ( abs `  A )  e.  RR )
17 0lt1 10550 . . . . . . . . . . . . . . 15  |-  0  <  1
1817a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  (Unit `  Z
)  ->  0  <  1 )
192gzrngunitlem 19811 . . . . . . . . . . . . . 14  |-  ( A  e.  (Unit `  Z
)  ->  1  <_  ( abs `  A ) )
2013, 15, 16, 18, 19ltletrd 10197 . . . . . . . . . . . . 13  |-  ( A  e.  (Unit `  Z
)  ->  0  <  ( abs `  A ) )
2120gt0ne0d 10592 . . . . . . . . . . . 12  |-  ( A  e.  (Unit `  Z
)  ->  ( abs `  A )  =/=  0
)
2212abs00ad 14030 . . . . . . . . . . . . 13  |-  ( A  e.  (Unit `  Z
)  ->  ( ( abs `  A )  =  0  <->  A  =  0
) )
2322necon3bid 2838 . . . . . . . . . . . 12  |-  ( A  e.  (Unit `  Z
)  ->  ( ( abs `  A )  =/=  0  <->  A  =/=  0
) )
2421, 23mpbid 222 . . . . . . . . . . 11  |-  ( A  e.  (Unit `  Z
)  ->  A  =/=  0 )
25 cnfldinv 19777 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( invr ` fld ) `  A )  =  ( 1  /  A ) )
2612, 24, 25syl2anc 693 . . . . . . . . . 10  |-  ( A  e.  (Unit `  Z
)  ->  ( ( invr ` fld ) `  A )  =  ( 1  /  A ) )
2710, 26eqtr3d 2658 . . . . . . . . 9  |-  ( A  e.  (Unit `  Z
)  ->  ( ( invr `  Z ) `  A )  =  ( 1  /  A ) )
282subrgring 18783 . . . . . . . . . . 11  |-  ( ZZ[_i]  e.  (SubRing ` fld )  ->  Z  e.  Ring )
291, 28ax-mp 5 . . . . . . . . . 10  |-  Z  e. 
Ring
305, 8unitinvcl 18674 . . . . . . . . . 10  |-  ( ( Z  e.  Ring  /\  A  e.  (Unit `  Z )
)  ->  ( ( invr `  Z ) `  A )  e.  (Unit `  Z ) )
3129, 30mpan 706 . . . . . . . . 9  |-  ( A  e.  (Unit `  Z
)  ->  ( ( invr `  Z ) `  A )  e.  (Unit `  Z ) )
3227, 31eqeltrrd 2702 . . . . . . . 8  |-  ( A  e.  (Unit `  Z
)  ->  ( 1  /  A )  e.  (Unit `  Z )
)
332gzrngunitlem 19811 . . . . . . . 8  |-  ( ( 1  /  A )  e.  (Unit `  Z
)  ->  1  <_  ( abs `  ( 1  /  A ) ) )
3432, 33syl 17 . . . . . . 7  |-  ( A  e.  (Unit `  Z
)  ->  1  <_  ( abs `  ( 1  /  A ) ) )
35 1cnd 10056 . . . . . . . 8  |-  ( A  e.  (Unit `  Z
)  ->  1  e.  CC )
3635, 12, 24absdivd 14194 . . . . . . 7  |-  ( A  e.  (Unit `  Z
)  ->  ( abs `  ( 1  /  A
) )  =  ( ( abs `  1
)  /  ( abs `  A ) ) )
3734, 36breqtrd 4679 . . . . . 6  |-  ( A  e.  (Unit `  Z
)  ->  1  <_  ( ( abs `  1
)  /  ( abs `  A ) ) )
38 1div1e1 10717 . . . . . 6  |-  ( 1  /  1 )  =  1
39 abs1 14037 . . . . . . . 8  |-  ( abs `  1 )  =  1
4039eqcomi 2631 . . . . . . 7  |-  1  =  ( abs `  1
)
4140oveq1i 6660 . . . . . 6  |-  ( 1  /  ( abs `  A
) )  =  ( ( abs `  1
)  /  ( abs `  A ) )
4237, 38, 413brtr4g 4687 . . . . 5  |-  ( A  e.  (Unit `  Z
)  ->  ( 1  /  1 )  <_ 
( 1  /  ( abs `  A ) ) )
43 lerec 10906 . . . . . 6  |-  ( ( ( ( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) )  /\  (
1  e.  RR  /\  0  <  1 ) )  ->  ( ( abs `  A )  <_  1  <->  ( 1  /  1 )  <_  ( 1  / 
( abs `  A
) ) ) )
4416, 20, 15, 18, 43syl22anc 1327 . . . . 5  |-  ( A  e.  (Unit `  Z
)  ->  ( ( abs `  A )  <_ 
1  <->  ( 1  / 
1 )  <_  (
1  /  ( abs `  A ) ) ) )
4542, 44mpbird 247 . . . 4  |-  ( A  e.  (Unit `  Z
)  ->  ( abs `  A )  <_  1
)
46 letri3 10123 . . . . 5  |-  ( ( ( abs `  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  A
)  =  1  <->  (
( abs `  A
)  <_  1  /\  1  <_  ( abs `  A
) ) ) )
4716, 14, 46sylancl 694 . . . 4  |-  ( A  e.  (Unit `  Z
)  ->  ( ( abs `  A )  =  1  <->  ( ( abs `  A )  <_  1  /\  1  <_  ( abs `  A ) ) ) )
4845, 19, 47mpbir2and 957 . . 3  |-  ( A  e.  (Unit `  Z
)  ->  ( abs `  A )  =  1 )
496, 48jca 554 . 2  |-  ( A  e.  (Unit `  Z
)  ->  ( A  e.  ZZ[_i]  /\  ( abs `  A
)  =  1 ) )
5011adantr 481 . . . 4  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  A  e.  CC )
51 simpr 477 . . . . . 6  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  ( abs `  A )  =  1 )
52 ax-1ne0 10005 . . . . . . 7  |-  1  =/=  0
5352a1i 11 . . . . . 6  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  1  =/=  0 )
5451, 53eqnetrd 2861 . . . . 5  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  ( abs `  A )  =/=  0 )
55 fveq2 6191 . . . . . . 7  |-  ( A  =  0  ->  ( abs `  A )  =  ( abs `  0
) )
56 abs0 14025 . . . . . . 7  |-  ( abs `  0 )  =  0
5755, 56syl6eq 2672 . . . . . 6  |-  ( A  =  0  ->  ( abs `  A )  =  0 )
5857necon3i 2826 . . . . 5  |-  ( ( abs `  A )  =/=  0  ->  A  =/=  0 )
5954, 58syl 17 . . . 4  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  A  =/=  0 )
60 eldifsn 4317 . . . 4  |-  ( A  e.  ( CC  \  { 0 } )  <-> 
( A  e.  CC  /\  A  =/=  0 ) )
6150, 59, 60sylanbrc 698 . . 3  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  A  e.  ( CC  \  {
0 } ) )
62 simpl 473 . . 3  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  A  e.  ZZ[_i]
)
6350, 59, 25syl2anc 693 . . . . 5  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
( invr ` fld ) `  A )  =  ( 1  /  A ) )
6450absvalsqd 14181 . . . . . . 7  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
6551oveq1d 6665 . . . . . . . 8  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
( abs `  A
) ^ 2 )  =  ( 1 ^ 2 ) )
66 sq1 12958 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
6765, 66syl6eq 2672 . . . . . . 7  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
( abs `  A
) ^ 2 )  =  1 )
6864, 67eqtr3d 2658 . . . . . 6  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  ( A  x.  ( * `  A ) )  =  1 )
6968oveq1d 6665 . . . . 5  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
( A  x.  (
* `  A )
)  /  A )  =  ( 1  /  A ) )
7050cjcld 13936 . . . . . 6  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
* `  A )  e.  CC )
7170, 50, 59divcan3d 10806 . . . . 5  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
( A  x.  (
* `  A )
)  /  A )  =  ( * `  A ) )
7263, 69, 713eqtr2d 2662 . . . 4  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
( invr ` fld ) `  A )  =  ( * `  A ) )
73 gzcjcl 15640 . . . . 5  |-  ( A  e.  ZZ[_i]  ->  ( * `  A )  e.  ZZ[_i] )
7473adantr 481 . . . 4  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
* `  A )  e.  ZZ[_i]
)
7572, 74eqeltrd 2701 . . 3  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  (
( invr ` fld ) `  A )  e.  ZZ[_i] )
76 cnfldbas 19750 . . . . . 6  |-  CC  =  ( Base ` fld )
77 cnfld0 19770 . . . . . 6  |-  0  =  ( 0g ` fld )
78 cndrng 19775 . . . . . 6  |-fld  e.  DivRing
7976, 77, 78drngui 18753 . . . . 5  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
802, 79, 5, 7subrgunit 18798 . . . 4  |-  ( ZZ[_i]  e.  (SubRing ` fld )  ->  ( A  e.  (Unit `  Z )  <->  ( A  e.  ( CC 
\  { 0 } )  /\  A  e.  ZZ[_i]  /\  ( ( invr ` fld ) `  A )  e.  ZZ[_i] ) ) )
811, 80ax-mp 5 . . 3  |-  ( A  e.  (Unit `  Z
)  <->  ( A  e.  ( CC  \  {
0 } )  /\  A  e.  ZZ[_i]  /\  ( (
invr ` fld ) `  A )  e.  ZZ[_i] ) )
8261, 62, 75, 81syl3anbrc 1246 . 2  |-  ( ( A  e.  ZZ[_i]  /\  ( abs `  A )  =  1 )  ->  A  e.  (Unit `  Z )
)
8349, 82impbii 199 1  |-  ( A  e.  (Unit `  Z
)  <->  ( A  e.  ZZ[_i]  /\  ( abs `  A
)  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   ^cexp 12860   *ccj 13836   abscabs 13974   ZZ[_i]cgz 15633   Basecbs 15857   ↾s cress 15858   Ringcrg 18547  Unitcui 18639   invrcinvr 18671  SubRingcsubrg 18776  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-cnfld 19747
This theorem is referenced by:  zringunit  19836
  Copyright terms: Public domain W3C validator