Proof of Theorem gzrngunit
Step | Hyp | Ref
| Expression |
1 | | gzsubrg 19800 |
. . . . 5
  
SubRing ℂfld |
2 | | gzrng.1 |
. . . . . 6
ℂfld ↾s    ![] ]](rbrack.gif)  |
3 | 2 | subrgbas 18789 |
. . . . 5
    SubRing ℂfld
         |
4 | 1, 3 | ax-mp 5 |
. . . 4
  
     |
5 | | eqid 2622 |
. . . 4
Unit  Unit   |
6 | 4, 5 | unitcl 18659 |
. . 3
 Unit 
   ![] ]](rbrack.gif)  |
7 | | eqid 2622 |
. . . . . . . . . . . 12
  ℂfld
  ℂfld |
8 | | eqid 2622 |
. . . . . . . . . . . 12
         |
9 | 2, 7, 5, 8 | subrginv 18796 |
. . . . . . . . . . 11
     SubRing ℂfld
Unit  
   ℂfld             |
10 | 1, 9 | mpan 706 |
. . . . . . . . . 10
 Unit 
   ℂfld             |
11 | | gzcn 15636 |
. . . . . . . . . . . 12
   
  |
12 | 6, 11 | syl 17 |
. . . . . . . . . . 11
 Unit 
  |
13 | | 0red 10041 |
. . . . . . . . . . . . . 14
 Unit 
  |
14 | | 1re 10039 |
. . . . . . . . . . . . . . 15
 |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . 14
 Unit 
  |
16 | 12 | abscld 14175 |
. . . . . . . . . . . . . 14
 Unit 
      |
17 | | 0lt1 10550 |
. . . . . . . . . . . . . . 15
 |
18 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
 Unit 
  |
19 | 2 | gzrngunitlem 19811 |
. . . . . . . . . . . . . 14
 Unit 
      |
20 | 13, 15, 16, 18, 19 | ltletrd 10197 |
. . . . . . . . . . . . 13
 Unit 
      |
21 | 20 | gt0ne0d 10592 |
. . . . . . . . . . . 12
 Unit 
      |
22 | 12 | abs00ad 14030 |
. . . . . . . . . . . . 13
 Unit 
    
   |
23 | 22 | necon3bid 2838 |
. . . . . . . . . . . 12
 Unit 
    
   |
24 | 21, 23 | mpbid 222 |
. . . . . . . . . . 11
 Unit 
  |
25 | | cnfldinv 19777 |
. . . . . . . . . . 11
      ℂfld       |
26 | 12, 24, 25 | syl2anc 693 |
. . . . . . . . . 10
 Unit 
   ℂfld       |
27 | 10, 26 | eqtr3d 2658 |
. . . . . . . . 9
 Unit 
            |
28 | 2 | subrgring 18783 |
. . . . . . . . . . 11
    SubRing ℂfld
  |
29 | 1, 28 | ax-mp 5 |
. . . . . . . . . 10
 |
30 | 5, 8 | unitinvcl 18674 |
. . . . . . . . . 10
  Unit  
        Unit    |
31 | 29, 30 | mpan 706 |
. . . . . . . . 9
 Unit 
        Unit    |
32 | 27, 31 | eqeltrrd 2702 |
. . . . . . . 8
 Unit 
  Unit    |
33 | 2 | gzrngunitlem 19811 |
. . . . . . . 8
   Unit 
        |
34 | 32, 33 | syl 17 |
. . . . . . 7
 Unit 
        |
35 | | 1cnd 10056 |
. . . . . . . 8
 Unit 
  |
36 | 35, 12, 24 | absdivd 14194 |
. . . . . . 7
 Unit 
                  |
37 | 34, 36 | breqtrd 4679 |
. . . . . 6
 Unit 
            |
38 | | 1div1e1 10717 |
. . . . . 6
   |
39 | | abs1 14037 |
. . . . . . . 8
     |
40 | 39 | eqcomi 2631 |
. . . . . . 7
     |
41 | 40 | oveq1i 6660 |
. . . . . 6
                 |
42 | 37, 38, 41 | 3brtr4g 4687 |
. . . . 5
 Unit 
          |
43 | | lerec 10906 |
. . . . . 6
                               |
44 | 16, 20, 15, 18, 43 | syl22anc 1327 |
. . . . 5
 Unit 
                |
45 | 42, 44 | mpbird 247 |
. . . 4
 Unit 
      |
46 | | letri3 10123 |
. . . . 5
     
          
        |
47 | 16, 14, 46 | sylancl 694 |
. . . 4
 Unit 
         
        |
48 | 45, 19, 47 | mpbir2and 957 |
. . 3
 Unit 
      |
49 | 6, 48 | jca 554 |
. 2
 Unit 
           |
50 | 11 | adantr 481 |
. . . 4
    
       |
51 | | simpr 477 |
. . . . . 6
    
           |
52 | | ax-1ne0 10005 |
. . . . . . 7
 |
53 | 52 | a1i 11 |
. . . . . 6
    
       |
54 | 51, 53 | eqnetrd 2861 |
. . . . 5
    
           |
55 | | fveq2 6191 |
. . . . . . 7
           |
56 | | abs0 14025 |
. . . . . . 7
     |
57 | 55, 56 | syl6eq 2672 |
. . . . . 6
       |
58 | 57 | necon3i 2826 |
. . . . 5
       |
59 | 54, 58 | syl 17 |
. . . 4
    
       |
60 | | eldifsn 4317 |
. . . 4
         |
61 | 50, 59, 60 | sylanbrc 698 |
. . 3
    
           |
62 | | simpl 473 |
. . 3
    
        ![] ]](rbrack.gif)  |
63 | 50, 59, 25 | syl2anc 693 |
. . . . 5
    
        ℂfld       |
64 | 50 | absvalsqd 14181 |
. . . . . . 7
    
                     |
65 | 51 | oveq1d 6665 |
. . . . . . . 8
    
                   |
66 | | sq1 12958 |
. . . . . . . 8
     |
67 | 65, 66 | syl6eq 2672 |
. . . . . . 7
    
               |
68 | 64, 67 | eqtr3d 2658 |
. . . . . 6
    
     
       |
69 | 68 | oveq1d 6665 |
. . . . 5
    
                 |
70 | 50 | cjcld 13936 |
. . . . . 6
    
           |
71 | 70, 50, 59 | divcan3d 10806 |
. . . . 5
    
                   |
72 | 63, 69, 71 | 3eqtr2d 2662 |
. . . 4
    
        ℂfld         |
73 | | gzcjcl 15640 |
. . . . 5
   
       ![] ]](rbrack.gif)  |
74 | 73 | adantr 481 |
. . . 4
    
            ![] ]](rbrack.gif)  |
75 | 72, 74 | eqeltrd 2701 |
. . 3
    
        ℂfld      ![] ]](rbrack.gif)  |
76 | | cnfldbas 19750 |
. . . . . 6
  ℂfld |
77 | | cnfld0 19770 |
. . . . . 6
  ℂfld |
78 | | cndrng 19775 |
. . . . . 6
ℂfld  |
79 | 76, 77, 78 | drngui 18753 |
. . . . 5
    Unit ℂfld |
80 | 2, 79, 5, 7 | subrgunit 18798 |
. . . 4
    SubRing ℂfld
 Unit             ℂfld      ![] ]](rbrack.gif)    |
81 | 1, 80 | ax-mp 5 |
. . 3
 Unit      
      ℂfld      ![] ]](rbrack.gif)   |
82 | 61, 62, 75, 81 | syl3anbrc 1246 |
. 2
    
     Unit    |
83 | 49, 82 | impbii 199 |
1
 Unit             |