| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > affineequiv | Structured version Visualization version Unicode version | ||
| Description: Equivalence between two
ways of expressing |
| Ref | Expression |
|---|---|
| affineequiv.A |
|
| affineequiv.B |
|
| affineequiv.C |
|
| affineequiv.D |
|
| Ref | Expression |
|---|---|
| affineequiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | affineequiv.C |
. . . . . . . 8
| |
| 2 | affineequiv.D |
. . . . . . . . 9
| |
| 3 | 2, 1 | mulcld 10060 |
. . . . . . . 8
|
| 4 | affineequiv.A |
. . . . . . . . 9
| |
| 5 | 2, 4 | mulcld 10060 |
. . . . . . . 8
|
| 6 | 1, 3, 5 | subsubd 10420 |
. . . . . . 7
|
| 7 | 1, 3 | subcld 10392 |
. . . . . . . 8
|
| 8 | 7, 5 | addcomd 10238 |
. . . . . . 7
|
| 9 | 6, 8 | eqtr2d 2657 |
. . . . . 6
|
| 10 | 1cnd 10056 |
. . . . . . . . 9
| |
| 11 | 10, 2, 1 | subdird 10487 |
. . . . . . . 8
|
| 12 | 1 | mulid2d 10058 |
. . . . . . . . 9
|
| 13 | 12 | oveq1d 6665 |
. . . . . . . 8
|
| 14 | 11, 13 | eqtrd 2656 |
. . . . . . 7
|
| 15 | 14 | oveq2d 6666 |
. . . . . 6
|
| 16 | affineequiv.B |
. . . . . . . 8
| |
| 17 | 1, 16 | subcld 10392 |
. . . . . . . 8
|
| 18 | 1, 4 | subcld 10392 |
. . . . . . . . 9
|
| 19 | 2, 18 | mulcld 10060 |
. . . . . . . 8
|
| 20 | 16, 17, 19 | addsubassd 10412 |
. . . . . . 7
|
| 21 | 16, 1 | pncan3d 10395 |
. . . . . . . 8
|
| 22 | 2, 1, 4 | subdid 10486 |
. . . . . . . 8
|
| 23 | 21, 22 | oveq12d 6668 |
. . . . . . 7
|
| 24 | 20, 23 | eqtr3d 2658 |
. . . . . 6
|
| 25 | 9, 15, 24 | 3eqtr4d 2666 |
. . . . 5
|
| 26 | 25 | eqeq2d 2632 |
. . . 4
|
| 27 | 16 | addid1d 10236 |
. . . . 5
|
| 28 | 27 | eqeq1d 2624 |
. . . 4
|
| 29 | 0cnd 10033 |
. . . . 5
| |
| 30 | 17, 19 | subcld 10392 |
. . . . 5
|
| 31 | 16, 29, 30 | addcand 10239 |
. . . 4
|
| 32 | 26, 28, 31 | 3bitr2d 296 |
. . 3
|
| 33 | eqcom 2629 |
. . 3
| |
| 34 | 32, 33 | syl6bb 276 |
. 2
|
| 35 | 17, 19 | subeq0ad 10402 |
. 2
|
| 36 | 34, 35 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-sub 10268 |
| This theorem is referenced by: affineequiv2 24554 angpieqvd 24558 chordthmlem2 24560 chordthmlem4 24562 |
| Copyright terms: Public domain | W3C validator |