MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequiv Structured version   Visualization version   Unicode version

Theorem affineequiv 24553
Description: Equivalence between two ways of expressing  B as an affine combination of  A and  C. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
affineequiv.A  |-  ( ph  ->  A  e.  CC )
affineequiv.B  |-  ( ph  ->  B  e.  CC )
affineequiv.C  |-  ( ph  ->  C  e.  CC )
affineequiv.D  |-  ( ph  ->  D  e.  CC )
Assertion
Ref Expression
affineequiv  |-  ( ph  ->  ( B  =  ( ( D  x.  A
)  +  ( ( 1  -  D )  x.  C ) )  <-> 
( C  -  B
)  =  ( D  x.  ( C  -  A ) ) ) )

Proof of Theorem affineequiv
StepHypRef Expression
1 affineequiv.C . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
2 affineequiv.D . . . . . . . . 9  |-  ( ph  ->  D  e.  CC )
32, 1mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( D  x.  C
)  e.  CC )
4 affineequiv.A . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
52, 4mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( D  x.  A
)  e.  CC )
61, 3, 5subsubd 10420 . . . . . . 7  |-  ( ph  ->  ( C  -  (
( D  x.  C
)  -  ( D  x.  A ) ) )  =  ( ( C  -  ( D  x.  C ) )  +  ( D  x.  A ) ) )
71, 3subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( C  -  ( D  x.  C )
)  e.  CC )
87, 5addcomd 10238 . . . . . . 7  |-  ( ph  ->  ( ( C  -  ( D  x.  C
) )  +  ( D  x.  A ) )  =  ( ( D  x.  A )  +  ( C  -  ( D  x.  C
) ) ) )
96, 8eqtr2d 2657 . . . . . 6  |-  ( ph  ->  ( ( D  x.  A )  +  ( C  -  ( D  x.  C ) ) )  =  ( C  -  ( ( D  x.  C )  -  ( D  x.  A
) ) ) )
10 1cnd 10056 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
1110, 2, 1subdird 10487 . . . . . . . 8  |-  ( ph  ->  ( ( 1  -  D )  x.  C
)  =  ( ( 1  x.  C )  -  ( D  x.  C ) ) )
121mulid2d 10058 . . . . . . . . 9  |-  ( ph  ->  ( 1  x.  C
)  =  C )
1312oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( 1  x.  C )  -  ( D  x.  C )
)  =  ( C  -  ( D  x.  C ) ) )
1411, 13eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( 1  -  D )  x.  C
)  =  ( C  -  ( D  x.  C ) ) )
1514oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( D  x.  A )  +  ( ( 1  -  D
)  x.  C ) )  =  ( ( D  x.  A )  +  ( C  -  ( D  x.  C
) ) ) )
16 affineequiv.B . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
171, 16subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( C  -  B
)  e.  CC )
181, 4subcld 10392 . . . . . . . . 9  |-  ( ph  ->  ( C  -  A
)  e.  CC )
192, 18mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( D  x.  ( C  -  A )
)  e.  CC )
2016, 17, 19addsubassd 10412 . . . . . . 7  |-  ( ph  ->  ( ( B  +  ( C  -  B
) )  -  ( D  x.  ( C  -  A ) ) )  =  ( B  +  ( ( C  -  B )  -  ( D  x.  ( C  -  A ) ) ) ) )
2116, 1pncan3d 10395 . . . . . . . 8  |-  ( ph  ->  ( B  +  ( C  -  B ) )  =  C )
222, 1, 4subdid 10486 . . . . . . . 8  |-  ( ph  ->  ( D  x.  ( C  -  A )
)  =  ( ( D  x.  C )  -  ( D  x.  A ) ) )
2321, 22oveq12d 6668 . . . . . . 7  |-  ( ph  ->  ( ( B  +  ( C  -  B
) )  -  ( D  x.  ( C  -  A ) ) )  =  ( C  -  ( ( D  x.  C )  -  ( D  x.  A )
) ) )
2420, 23eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( B  +  ( ( C  -  B
)  -  ( D  x.  ( C  -  A ) ) ) )  =  ( C  -  ( ( D  x.  C )  -  ( D  x.  A
) ) ) )
259, 15, 243eqtr4d 2666 . . . . 5  |-  ( ph  ->  ( ( D  x.  A )  +  ( ( 1  -  D
)  x.  C ) )  =  ( B  +  ( ( C  -  B )  -  ( D  x.  ( C  -  A )
) ) ) )
2625eqeq2d 2632 . . . 4  |-  ( ph  ->  ( B  =  ( ( D  x.  A
)  +  ( ( 1  -  D )  x.  C ) )  <-> 
B  =  ( B  +  ( ( C  -  B )  -  ( D  x.  ( C  -  A )
) ) ) ) )
2716addid1d 10236 . . . . 5  |-  ( ph  ->  ( B  +  0 )  =  B )
2827eqeq1d 2624 . . . 4  |-  ( ph  ->  ( ( B  + 
0 )  =  ( B  +  ( ( C  -  B )  -  ( D  x.  ( C  -  A
) ) ) )  <-> 
B  =  ( B  +  ( ( C  -  B )  -  ( D  x.  ( C  -  A )
) ) ) ) )
29 0cnd 10033 . . . . 5  |-  ( ph  ->  0  e.  CC )
3017, 19subcld 10392 . . . . 5  |-  ( ph  ->  ( ( C  -  B )  -  ( D  x.  ( C  -  A ) ) )  e.  CC )
3116, 29, 30addcand 10239 . . . 4  |-  ( ph  ->  ( ( B  + 
0 )  =  ( B  +  ( ( C  -  B )  -  ( D  x.  ( C  -  A
) ) ) )  <->  0  =  ( ( C  -  B )  -  ( D  x.  ( C  -  A
) ) ) ) )
3226, 28, 313bitr2d 296 . . 3  |-  ( ph  ->  ( B  =  ( ( D  x.  A
)  +  ( ( 1  -  D )  x.  C ) )  <->  0  =  ( ( C  -  B )  -  ( D  x.  ( C  -  A
) ) ) ) )
33 eqcom 2629 . . 3  |-  ( 0  =  ( ( C  -  B )  -  ( D  x.  ( C  -  A )
) )  <->  ( ( C  -  B )  -  ( D  x.  ( C  -  A
) ) )  =  0 )
3432, 33syl6bb 276 . 2  |-  ( ph  ->  ( B  =  ( ( D  x.  A
)  +  ( ( 1  -  D )  x.  C ) )  <-> 
( ( C  -  B )  -  ( D  x.  ( C  -  A ) ) )  =  0 ) )
3517, 19subeq0ad 10402 . 2  |-  ( ph  ->  ( ( ( C  -  B )  -  ( D  x.  ( C  -  A )
) )  =  0  <-> 
( C  -  B
)  =  ( D  x.  ( C  -  A ) ) ) )
3634, 35bitrd 268 1  |-  ( ph  ->  ( B  =  ( ( D  x.  A
)  +  ( ( 1  -  D )  x.  C ) )  <-> 
( C  -  B
)  =  ( D  x.  ( C  -  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268
This theorem is referenced by:  affineequiv2  24554  angpieqvd  24558  chordthmlem2  24560  chordthmlem4  24562
  Copyright terms: Public domain W3C validator