MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem2 Structured version   Visualization version   Unicode version

Theorem chordthmlem2 24560
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 24559, where P = B, and using angrtmuld 24538 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem2.angdef  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
chordthmlem2.A  |-  ( ph  ->  A  e.  CC )
chordthmlem2.B  |-  ( ph  ->  B  e.  CC )
chordthmlem2.Q  |-  ( ph  ->  Q  e.  CC )
chordthmlem2.X  |-  ( ph  ->  X  e.  RR )
chordthmlem2.M  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
chordthmlem2.P  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
chordthmlem2.ABequidistQ  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
chordthmlem2.PneM  |-  ( ph  ->  P  =/=  M )
chordthmlem2.QneM  |-  ( ph  ->  Q  =/=  M )
Assertion
Ref Expression
chordthmlem2  |-  ( ph  ->  ( ( Q  -  M ) F ( P  -  M ) )  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
Distinct variable groups:    x, y, Q    x, P, y    x, M, y    x, B, y   
x, A, y
Allowed substitution hints:    ph( x, y)    F( x, y)    X( x, y)

Proof of Theorem chordthmlem2
StepHypRef Expression
1 chordthmlem2.angdef . . 3  |-  F  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
2 chordthmlem2.A . . 3  |-  ( ph  ->  A  e.  CC )
3 chordthmlem2.B . . 3  |-  ( ph  ->  B  e.  CC )
4 chordthmlem2.Q . . 3  |-  ( ph  ->  Q  e.  CC )
5 chordthmlem2.M . . 3  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
6 chordthmlem2.ABequidistQ . . 3  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
7 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
87a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  e.  RR )
9 2ne0 11113 . . . . . . . . . 10  |-  2  =/=  0
109a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  =/=  0 )
118, 10rereccld 10852 . . . . . . . 8  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
12 chordthmlem2.X . . . . . . . 8  |-  ( ph  ->  X  e.  RR )
1311, 12resubcld 10458 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  e.  RR )
1413recnd 10068 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  e.  CC )
153, 2subcld 10392 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  CC )
1611recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
1712recnd 10068 . . . . . . . . 9  |-  ( ph  ->  X  e.  CC )
1816, 17, 15subdird 10487 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  -  ( X  x.  ( B  -  A
) ) ) )
19 2cnd 11093 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  CC )
203, 19, 10divcan4d 10807 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  x.  2 )  /  2
)  =  B )
213times2d 11276 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  x.  2 )  =  ( B  +  B ) )
2221oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  x.  2 )  /  2
)  =  ( ( B  +  B )  /  2 ) )
2320, 22eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ph  ->  B  =  ( ( B  +  B )  /  2 ) )
2423, 5oveq12d 6668 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  M
)  =  ( ( ( B  +  B
)  /  2 )  -  ( ( A  +  B )  / 
2 ) ) )
253, 3addcld 10059 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  +  B
)  e.  CC )
262, 3addcld 10059 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  e.  CC )
2725, 26, 19, 10divsubdird 10840 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B  +  B )  -  ( A  +  B
) )  /  2
)  =  ( ( ( B  +  B
)  /  2 )  -  ( ( A  +  B )  / 
2 ) ) )
283, 2, 3pnpcan2d 10430 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  +  B )  -  ( A  +  B )
)  =  ( B  -  A ) )
2928oveq1d 6665 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B  +  B )  -  ( A  +  B
) )  /  2
)  =  ( ( B  -  A )  /  2 ) )
3024, 27, 293eqtr2d 2662 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  M
)  =  ( ( B  -  A )  /  2 ) )
3115, 19, 10divrec2d 10805 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  A )  /  2
)  =  ( ( 1  /  2 )  x.  ( B  -  A ) ) )
3230, 31eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( B  -  M
)  =  ( ( 1  /  2 )  x.  ( B  -  A ) ) )
33 chordthmlem2.P . . . . . . . . . 10  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
3417, 2mulcld 10060 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  x.  A
)  e.  CC )
35 1cnd 10056 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  CC )
3635, 17subcld 10392 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  -  X
)  e.  CC )
3736, 3mulcld 10060 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1  -  X )  x.  B
)  e.  CC )
3834, 37addcld 10059 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( X  x.  A )  +  ( ( 1  -  X
)  x.  B ) )  e.  CC )
3933, 38eqeltrd 2701 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  CC )
402, 39, 3, 17affineequiv 24553 . . . . . . . . . 10  |-  ( ph  ->  ( P  =  ( ( X  x.  A
)  +  ( ( 1  -  X )  x.  B ) )  <-> 
( B  -  P
)  =  ( X  x.  ( B  -  A ) ) ) )
4133, 40mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( B  -  P
)  =  ( X  x.  ( B  -  A ) ) )
4232, 41oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  M )  -  ( B  -  P )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  -  ( X  x.  ( B  -  A
) ) ) )
4326halfcld 11277 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  CC )
445, 43eqeltrd 2701 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
453, 44, 39nnncan1d 10426 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  M )  -  ( B  -  P )
)  =  ( P  -  M ) )
4618, 42, 453eqtr2rd 2663 . . . . . . 7  |-  ( ph  ->  ( P  -  M
)  =  ( ( ( 1  /  2
)  -  X )  x.  ( B  -  A ) ) )
47 chordthmlem2.PneM . . . . . . . 8  |-  ( ph  ->  P  =/=  M )
4839, 44, 47subne0d 10401 . . . . . . 7  |-  ( ph  ->  ( P  -  M
)  =/=  0 )
4946, 48eqnetrrd 2862 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A )
)  =/=  0 )
5014, 15, 49mulne0bbd 10683 . . . . 5  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
513, 2, 50subne0ad 10403 . . . 4  |-  ( ph  ->  B  =/=  A )
5251necomd 2849 . . 3  |-  ( ph  ->  A  =/=  B )
53 chordthmlem2.QneM . . 3  |-  ( ph  ->  Q  =/=  M )
541, 2, 3, 4, 5, 6, 52, 53chordthmlem 24559 . 2  |-  ( ph  ->  ( ( Q  -  M ) F ( B  -  M ) )  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
554, 44subcld 10392 . . 3  |-  ( ph  ->  ( Q  -  M
)  e.  CC )
5639, 44subcld 10392 . . 3  |-  ( ph  ->  ( P  -  M
)  e.  CC )
573, 44subcld 10392 . . 3  |-  ( ph  ->  ( B  -  M
)  e.  CC )
584, 44, 53subne0d 10401 . . 3  |-  ( ph  ->  ( Q  -  M
)  =/=  0 )
5919, 10recne0d 10795 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  =/=  0 )
6016, 15, 59, 50mulne0d 10679 . . . 4  |-  ( ph  ->  ( ( 1  / 
2 )  x.  ( B  -  A )
)  =/=  0 )
6132, 60eqnetrd 2861 . . 3  |-  ( ph  ->  ( B  -  M
)  =/=  0 )
6232, 46oveq12d 6668 . . . . 5  |-  ( ph  ->  ( ( B  -  M )  /  ( P  -  M )
)  =  ( ( ( 1  /  2
)  x.  ( B  -  A ) )  /  ( ( ( 1  /  2 )  -  X )  x.  ( B  -  A
) ) ) )
6314, 15, 49mulne0bad 10682 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 )  -  X
)  =/=  0 )
6416, 14, 15, 63, 50divcan5rd 10828 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 )  x.  ( B  -  A
) )  /  (
( ( 1  / 
2 )  -  X
)  x.  ( B  -  A ) ) )  =  ( ( 1  /  2 )  /  ( ( 1  /  2 )  -  X ) ) )
6562, 64eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( B  -  M )  /  ( P  -  M )
)  =  ( ( 1  /  2 )  /  ( ( 1  /  2 )  -  X ) ) )
6611, 13, 63redivcld 10853 . . . 4  |-  ( ph  ->  ( ( 1  / 
2 )  /  (
( 1  /  2
)  -  X ) )  e.  RR )
6765, 66eqeltrd 2701 . . 3  |-  ( ph  ->  ( ( B  -  M )  /  ( P  -  M )
)  e.  RR )
681, 55, 56, 57, 58, 48, 61, 67angrtmuld 24538 . 2  |-  ( ph  ->  ( ( ( Q  -  M ) F ( P  -  M
) )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) }  <->  ( ( Q  -  M ) F ( B  -  M
) )  e.  {
( pi  /  2
) ,  -u (
pi  /  2 ) } ) )
6954, 68mpbird 247 1  |-  ( ph  ->  ( ( Q  -  M ) F ( P  -  M ) )  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   Imcim 13838   abscabs 13974   picpi 14797   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  chordthmlem3  24561
  Copyright terms: Public domain W3C validator