| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chordthmlem4 | Structured version Visualization version Unicode version | ||
| Description: If P is on the segment AB and M is the midpoint of AB, then PA |
| Ref | Expression |
|---|---|
| chordthmlem4.A |
|
| chordthmlem4.B |
|
| chordthmlem4.X |
|
| chordthmlem4.M |
|
| chordthmlem4.P |
|
| Ref | Expression |
|---|---|
| chordthmlem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 10039 |
. . . . . . . . 9
| |
| 2 | 1 | a1i 11 |
. . . . . . . 8
|
| 3 | unitssre 12319 |
. . . . . . . . 9
| |
| 4 | chordthmlem4.X |
. . . . . . . . 9
| |
| 5 | 3, 4 | sseldi 3601 |
. . . . . . . 8
|
| 6 | 2, 5 | resubcld 10458 |
. . . . . . 7
|
| 7 | 6 | recnd 10068 |
. . . . . 6
|
| 8 | 7 | abscld 14175 |
. . . . 5
|
| 9 | 8 | recnd 10068 |
. . . 4
|
| 10 | chordthmlem4.B |
. . . . . . 7
| |
| 11 | chordthmlem4.A |
. . . . . . 7
| |
| 12 | 10, 11 | subcld 10392 |
. . . . . 6
|
| 13 | 12 | abscld 14175 |
. . . . 5
|
| 14 | 13 | recnd 10068 |
. . . 4
|
| 15 | 5 | recnd 10068 |
. . . . . 6
|
| 16 | 15 | abscld 14175 |
. . . . 5
|
| 17 | 16 | recnd 10068 |
. . . 4
|
| 18 | 9, 14, 17, 14 | mul4d 10248 |
. . 3
|
| 19 | chordthmlem4.P |
. . . . . . 7
| |
| 20 | 15, 11 | mulcld 10060 |
. . . . . . . . . 10
|
| 21 | 7, 10 | mulcld 10060 |
. . . . . . . . . 10
|
| 22 | 20, 21 | addcld 10059 |
. . . . . . . . 9
|
| 23 | 19, 22 | eqeltrd 2701 |
. . . . . . . 8
|
| 24 | 11, 23, 10, 15 | affineequiv2 24554 |
. . . . . . 7
|
| 25 | 19, 24 | mpbid 222 |
. . . . . 6
|
| 26 | 25 | fveq2d 6195 |
. . . . 5
|
| 27 | 7, 12 | absmuld 14193 |
. . . . 5
|
| 28 | 26, 27 | eqtrd 2656 |
. . . 4
|
| 29 | 23, 10 | abssubd 14192 |
. . . . 5
|
| 30 | 11, 23, 10, 15 | affineequiv 24553 |
. . . . . . 7
|
| 31 | 19, 30 | mpbid 222 |
. . . . . 6
|
| 32 | 31 | fveq2d 6195 |
. . . . 5
|
| 33 | 15, 12 | absmuld 14193 |
. . . . 5
|
| 34 | 29, 32, 33 | 3eqtrd 2660 |
. . . 4
|
| 35 | 28, 34 | oveq12d 6668 |
. . 3
|
| 36 | 14 | sqvald 13005 |
. . . 4
|
| 37 | 36 | oveq2d 6666 |
. . 3
|
| 38 | 18, 35, 37 | 3eqtr4d 2666 |
. 2
|
| 39 | 2 | recnd 10068 |
. . . . . 6
|
| 40 | 39 | halfcld 11277 |
. . . . 5
|
| 41 | 40 | sqcld 13006 |
. . . 4
|
| 42 | 2 | rehalfcld 11279 |
. . . . . . . . 9
|
| 43 | 42, 5 | resubcld 10458 |
. . . . . . . 8
|
| 44 | 43 | recnd 10068 |
. . . . . . 7
|
| 45 | 44 | abscld 14175 |
. . . . . 6
|
| 46 | 45 | recnd 10068 |
. . . . 5
|
| 47 | 46 | sqcld 13006 |
. . . 4
|
| 48 | 14 | sqcld 13006 |
. . . 4
|
| 49 | 41, 47, 48 | subdird 10487 |
. . 3
|
| 50 | subsq 12972 |
. . . . . . 7
| |
| 51 | 40, 44, 50 | syl2anc 693 |
. . . . . 6
|
| 52 | 40, 40, 15 | addsubassd 10412 |
. . . . . . . 8
|
| 53 | 39 | 2halvesd 11278 |
. . . . . . . . 9
|
| 54 | 53 | oveq1d 6665 |
. . . . . . . 8
|
| 55 | 52, 54 | eqtr3d 2658 |
. . . . . . 7
|
| 56 | 40, 15 | nncand 10397 |
. . . . . . 7
|
| 57 | 55, 56 | oveq12d 6668 |
. . . . . 6
|
| 58 | 51, 57 | eqtr2d 2657 |
. . . . 5
|
| 59 | 0re 10040 |
. . . . . . . . . 10
| |
| 60 | 59, 1 | elicc2i 12239 |
. . . . . . . . 9
|
| 61 | 4, 60 | sylib 208 |
. . . . . . . 8
|
| 62 | 61 | simp3d 1075 |
. . . . . . 7
|
| 63 | 5, 2, 62 | abssubge0d 14170 |
. . . . . 6
|
| 64 | 61 | simp2d 1074 |
. . . . . . 7
|
| 65 | 5, 64 | absidd 14161 |
. . . . . 6
|
| 66 | 63, 65 | oveq12d 6668 |
. . . . 5
|
| 67 | absresq 14042 |
. . . . . . 7
| |
| 68 | 43, 67 | syl 17 |
. . . . . 6
|
| 69 | 68 | oveq2d 6666 |
. . . . 5
|
| 70 | 58, 66, 69 | 3eqtr4d 2666 |
. . . 4
|
| 71 | 70 | oveq1d 6665 |
. . 3
|
| 72 | 2cnd 11093 |
. . . . . . . . . . . . 13
| |
| 73 | 2ne0 11113 |
. . . . . . . . . . . . . 14
| |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . 13
|
| 75 | 10, 72, 74 | divcan4d 10807 |
. . . . . . . . . . . 12
|
| 76 | 10 | times2d 11276 |
. . . . . . . . . . . . 13
|
| 77 | 76 | oveq1d 6665 |
. . . . . . . . . . . 12
|
| 78 | 75, 77 | eqtr3d 2658 |
. . . . . . . . . . 11
|
| 79 | chordthmlem4.M |
. . . . . . . . . . 11
| |
| 80 | 78, 79 | oveq12d 6668 |
. . . . . . . . . 10
|
| 81 | 10, 10 | addcld 10059 |
. . . . . . . . . . 11
|
| 82 | 11, 10 | addcld 10059 |
. . . . . . . . . . 11
|
| 83 | 81, 82, 72, 74 | divsubdird 10840 |
. . . . . . . . . 10
|
| 84 | 10, 11, 10 | pnpcan2d 10430 |
. . . . . . . . . . 11
|
| 85 | 84 | oveq1d 6665 |
. . . . . . . . . 10
|
| 86 | 80, 83, 85 | 3eqtr2d 2662 |
. . . . . . . . 9
|
| 87 | 12, 72, 74 | divrec2d 10805 |
. . . . . . . . 9
|
| 88 | 86, 87 | eqtrd 2656 |
. . . . . . . 8
|
| 89 | 88 | fveq2d 6195 |
. . . . . . 7
|
| 90 | 40, 12 | absmuld 14193 |
. . . . . . 7
|
| 91 | 59 | a1i 11 |
. . . . . . . . . 10
|
| 92 | halfgt0 11248 |
. . . . . . . . . . 11
| |
| 93 | 92 | a1i 11 |
. . . . . . . . . 10
|
| 94 | 91, 42, 93 | ltled 10185 |
. . . . . . . . 9
|
| 95 | 42, 94 | absidd 14161 |
. . . . . . . 8
|
| 96 | 95 | oveq1d 6665 |
. . . . . . 7
|
| 97 | 89, 90, 96 | 3eqtrd 2660 |
. . . . . 6
|
| 98 | 97 | oveq1d 6665 |
. . . . 5
|
| 99 | 40, 14 | sqmuld 13020 |
. . . . 5
|
| 100 | 98, 99 | eqtrd 2656 |
. . . 4
|
| 101 | 40, 15, 12 | subdird 10487 |
. . . . . . . . 9
|
| 102 | 88, 31 | oveq12d 6668 |
. . . . . . . . 9
|
| 103 | 82 | halfcld 11277 |
. . . . . . . . . . 11
|
| 104 | 79, 103 | eqeltrd 2701 |
. . . . . . . . . 10
|
| 105 | 10, 104, 23 | nnncan1d 10426 |
. . . . . . . . 9
|
| 106 | 101, 102, 105 | 3eqtr2rd 2663 |
. . . . . . . 8
|
| 107 | 106 | fveq2d 6195 |
. . . . . . 7
|
| 108 | 44, 12 | absmuld 14193 |
. . . . . . 7
|
| 109 | 107, 108 | eqtrd 2656 |
. . . . . 6
|
| 110 | 109 | oveq1d 6665 |
. . . . 5
|
| 111 | 46, 14 | sqmuld 13020 |
. . . . 5
|
| 112 | 110, 111 | eqtrd 2656 |
. . . 4
|
| 113 | 100, 112 | oveq12d 6668 |
. . 3
|
| 114 | 49, 71, 113 | 3eqtr4rd 2667 |
. 2
|
| 115 | 38, 114 | eqtr4d 2659 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-icc 12182 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
| This theorem is referenced by: chordthmlem5 24563 |
| Copyright terms: Public domain | W3C validator |