Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1 Structured version   Visualization version   Unicode version

Theorem bj-bary1 33162
Description: Barycentric coordinates in one dimension. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a  |-  ( ph  ->  A  e.  CC )
bj-bary1.b  |-  ( ph  ->  B  e.  CC )
bj-bary1.x  |-  ( ph  ->  X  e.  CC )
bj-bary1.neq  |-  ( ph  ->  A  =/=  B )
bj-bary1.s  |-  ( ph  ->  S  e.  CC )
bj-bary1.t  |-  ( ph  ->  T  e.  CC )
Assertion
Ref Expression
bj-bary1  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  <->  ( S  =  ( ( B  -  X )  / 
( B  -  A
) )  /\  T  =  ( ( X  -  A )  / 
( B  -  A
) ) ) ) )

Proof of Theorem bj-bary1
StepHypRef Expression
1 bj-bary1.s . . . . . . . . 9  |-  ( ph  ->  S  e.  CC )
2 bj-bary1.a . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
31, 2mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( S  x.  A
)  e.  CC )
4 bj-bary1.t . . . . . . . . 9  |-  ( ph  ->  T  e.  CC )
5 bj-bary1.b . . . . . . . . 9  |-  ( ph  ->  B  e.  CC )
64, 5mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( T  x.  B
)  e.  CC )
73, 6addcomd 10238 . . . . . . 7  |-  ( ph  ->  ( ( S  x.  A )  +  ( T  x.  B ) )  =  ( ( T  x.  B )  +  ( S  x.  A ) ) )
87eqeq2d 2632 . . . . . 6  |-  ( ph  ->  ( X  =  ( ( S  x.  A
)  +  ( T  x.  B ) )  <-> 
X  =  ( ( T  x.  B )  +  ( S  x.  A ) ) ) )
98biimpd 219 . . . . 5  |-  ( ph  ->  ( X  =  ( ( S  x.  A
)  +  ( T  x.  B ) )  ->  X  =  ( ( T  x.  B
)  +  ( S  x.  A ) ) ) )
101, 4addcomd 10238 . . . . . . 7  |-  ( ph  ->  ( S  +  T
)  =  ( T  +  S ) )
1110eqeq1d 2624 . . . . . 6  |-  ( ph  ->  ( ( S  +  T )  =  1  <-> 
( T  +  S
)  =  1 ) )
1211biimpd 219 . . . . 5  |-  ( ph  ->  ( ( S  +  T )  =  1  ->  ( T  +  S )  =  1 ) )
13 bj-bary1.x . . . . . 6  |-  ( ph  ->  X  e.  CC )
14 bj-bary1.neq . . . . . . 7  |-  ( ph  ->  A  =/=  B )
1514necomd 2849 . . . . . 6  |-  ( ph  ->  B  =/=  A )
165, 2, 13, 15, 4, 1bj-bary1lem1 33161 . . . . 5  |-  ( ph  ->  ( ( X  =  ( ( T  x.  B )  +  ( S  x.  A ) )  /\  ( T  +  S )  =  1 )  ->  S  =  ( ( X  -  B )  / 
( A  -  B
) ) ) )
179, 12, 16syl2and 500 . . . 4  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  ->  S  =  ( ( X  -  B )  / 
( A  -  B
) ) ) )
1813, 5, 2, 5, 14div2subd 10851 . . . . 5  |-  ( ph  ->  ( ( X  -  B )  /  ( A  -  B )
)  =  ( ( B  -  X )  /  ( B  -  A ) ) )
1918eqeq2d 2632 . . . 4  |-  ( ph  ->  ( S  =  ( ( X  -  B
)  /  ( A  -  B ) )  <-> 
S  =  ( ( B  -  X )  /  ( B  -  A ) ) ) )
2017, 19sylibd 229 . . 3  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  ->  S  =  ( ( B  -  X )  / 
( B  -  A
) ) ) )
212, 5, 13, 14, 1, 4bj-bary1lem1 33161 . . 3  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  ->  T  =  ( ( X  -  A )  / 
( B  -  A
) ) ) )
2220, 21jcad 555 . 2  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  ->  ( S  =  ( ( B  -  X )  /  ( B  -  A ) )  /\  T  =  ( ( X  -  A )  /  ( B  -  A ) ) ) ) )
232, 5, 13, 14bj-bary1lem 33160 . . . 4  |-  ( ph  ->  X  =  ( ( ( ( B  -  X )  /  ( B  -  A )
)  x.  A )  +  ( ( ( X  -  A )  /  ( B  -  A ) )  x.  B ) ) )
24 oveq1 6657 . . . . . 6  |-  ( S  =  ( ( B  -  X )  / 
( B  -  A
) )  ->  ( S  x.  A )  =  ( ( ( B  -  X )  /  ( B  -  A ) )  x.  A ) )
25 oveq1 6657 . . . . . 6  |-  ( T  =  ( ( X  -  A )  / 
( B  -  A
) )  ->  ( T  x.  B )  =  ( ( ( X  -  A )  /  ( B  -  A ) )  x.  B ) )
2624, 25oveqan12d 6669 . . . . 5  |-  ( ( S  =  ( ( B  -  X )  /  ( B  -  A ) )  /\  T  =  ( ( X  -  A )  /  ( B  -  A ) ) )  ->  ( ( S  x.  A )  +  ( T  x.  B
) )  =  ( ( ( ( B  -  X )  / 
( B  -  A
) )  x.  A
)  +  ( ( ( X  -  A
)  /  ( B  -  A ) )  x.  B ) ) )
2726a1i 11 . . . 4  |-  ( ph  ->  ( ( S  =  ( ( B  -  X )  /  ( B  -  A )
)  /\  T  =  ( ( X  -  A )  /  ( B  -  A )
) )  ->  (
( S  x.  A
)  +  ( T  x.  B ) )  =  ( ( ( ( B  -  X
)  /  ( B  -  A ) )  x.  A )  +  ( ( ( X  -  A )  / 
( B  -  A
) )  x.  B
) ) ) )
28 eqtr3 2643 . . . 4  |-  ( ( X  =  ( ( ( ( B  -  X )  /  ( B  -  A )
)  x.  A )  +  ( ( ( X  -  A )  /  ( B  -  A ) )  x.  B ) )  /\  ( ( S  x.  A )  +  ( T  x.  B ) )  =  ( ( ( ( B  -  X )  /  ( B  -  A )
)  x.  A )  +  ( ( ( X  -  A )  /  ( B  -  A ) )  x.  B ) ) )  ->  X  =  ( ( S  x.  A
)  +  ( T  x.  B ) ) )
2923, 27, 28syl6an 568 . . 3  |-  ( ph  ->  ( ( S  =  ( ( B  -  X )  /  ( B  -  A )
)  /\  T  =  ( ( X  -  A )  /  ( B  -  A )
) )  ->  X  =  ( ( S  x.  A )  +  ( T  x.  B
) ) ) )
30 oveq12 6659 . . . 4  |-  ( ( S  =  ( ( B  -  X )  /  ( B  -  A ) )  /\  T  =  ( ( X  -  A )  /  ( B  -  A ) ) )  ->  ( S  +  T )  =  ( ( ( B  -  X )  /  ( B  -  A )
)  +  ( ( X  -  A )  /  ( B  -  A ) ) ) )
315, 13subcld 10392 . . . . . . 7  |-  ( ph  ->  ( B  -  X
)  e.  CC )
3213, 2subcld 10392 . . . . . . 7  |-  ( ph  ->  ( X  -  A
)  e.  CC )
335, 2subcld 10392 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  e.  CC )
345, 2, 15subne0d 10401 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
3531, 32, 33, 34divdird 10839 . . . . . 6  |-  ( ph  ->  ( ( ( B  -  X )  +  ( X  -  A
) )  /  ( B  -  A )
)  =  ( ( ( B  -  X
)  /  ( B  -  A ) )  +  ( ( X  -  A )  / 
( B  -  A
) ) ) )
365, 13, 2npncand 10416 . . . . . . 7  |-  ( ph  ->  ( ( B  -  X )  +  ( X  -  A ) )  =  ( B  -  A ) )
3733, 34, 36diveq1bd 10849 . . . . . 6  |-  ( ph  ->  ( ( ( B  -  X )  +  ( X  -  A
) )  /  ( B  -  A )
)  =  1 )
3835, 37eqtr3d 2658 . . . . 5  |-  ( ph  ->  ( ( ( B  -  X )  / 
( B  -  A
) )  +  ( ( X  -  A
)  /  ( B  -  A ) ) )  =  1 )
3938eqeq2d 2632 . . . 4  |-  ( ph  ->  ( ( S  +  T )  =  ( ( ( B  -  X )  /  ( B  -  A )
)  +  ( ( X  -  A )  /  ( B  -  A ) ) )  <-> 
( S  +  T
)  =  1 ) )
4030, 39syl5ib 234 . . 3  |-  ( ph  ->  ( ( S  =  ( ( B  -  X )  /  ( B  -  A )
)  /\  T  =  ( ( X  -  A )  /  ( B  -  A )
) )  ->  ( S  +  T )  =  1 ) )
4129, 40jcad 555 . 2  |-  ( ph  ->  ( ( S  =  ( ( B  -  X )  /  ( B  -  A )
)  /\  T  =  ( ( X  -  A )  /  ( B  -  A )
) )  ->  ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T
)  =  1 ) ) )
4222, 41impbid 202 1  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  <->  ( S  =  ( ( B  -  X )  / 
( B  -  A
) )  /\  T  =  ( ( X  -  A )  / 
( B  -  A
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator