Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem Structured version   Visualization version   Unicode version

Theorem bj-bary1lem 33160
Description: A lemma for barycentric coordinates in one dimension. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a  |-  ( ph  ->  A  e.  CC )
bj-bary1.b  |-  ( ph  ->  B  e.  CC )
bj-bary1.x  |-  ( ph  ->  X  e.  CC )
bj-bary1.neq  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
bj-bary1lem  |-  ( ph  ->  X  =  ( ( ( ( B  -  X )  /  ( B  -  A )
)  x.  A )  +  ( ( ( X  -  A )  /  ( B  -  A ) )  x.  B ) ) )

Proof of Theorem bj-bary1lem
StepHypRef Expression
1 bj-bary1.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
2 bj-bary1.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
31, 2mulcld 10060 . . . . . . . . 9  |-  ( ph  ->  ( B  x.  A
)  e.  CC )
4 bj-bary1.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  CC )
54, 2mulcld 10060 . . . . . . . . 9  |-  ( ph  ->  ( X  x.  A
)  e.  CC )
63, 5subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( ( B  x.  A )  -  ( X  x.  A )
)  e.  CC )
74, 1mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( X  x.  B
)  e.  CC )
82, 1mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
96, 7, 8addsub12d 10415 . . . . . . 7  |-  ( ph  ->  ( ( ( B  x.  A )  -  ( X  x.  A
) )  +  ( ( X  x.  B
)  -  ( A  x.  B ) ) )  =  ( ( X  x.  B )  +  ( ( ( B  x.  A )  -  ( X  x.  A ) )  -  ( A  x.  B
) ) ) )
103, 5, 8sub32d 10424 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  x.  A )  -  ( X  x.  A
) )  -  ( A  x.  B )
)  =  ( ( ( B  x.  A
)  -  ( A  x.  B ) )  -  ( X  x.  A ) ) )
111, 2bj-subcom 33154 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  x.  A )  -  ( A  x.  B )
)  =  0 )
1211oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B  x.  A )  -  ( A  x.  B
) )  -  ( X  x.  A )
)  =  ( 0  -  ( X  x.  A ) ) )
1310, 12eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( ( B  x.  A )  -  ( X  x.  A
) )  -  ( A  x.  B )
)  =  ( 0  -  ( X  x.  A ) ) )
1413oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( ( X  x.  B )  +  ( ( ( B  x.  A )  -  ( X  x.  A )
)  -  ( A  x.  B ) ) )  =  ( ( X  x.  B )  +  ( 0  -  ( X  x.  A
) ) ) )
159, 14eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( ( B  x.  A )  -  ( X  x.  A
) )  +  ( ( X  x.  B
)  -  ( A  x.  B ) ) )  =  ( ( X  x.  B )  +  ( 0  -  ( X  x.  A
) ) ) )
16 0cnd 10033 . . . . . . 7  |-  ( ph  ->  0  e.  CC )
177, 16, 5addsubassd 10412 . . . . . 6  |-  ( ph  ->  ( ( ( X  x.  B )  +  0 )  -  ( X  x.  A )
)  =  ( ( X  x.  B )  +  ( 0  -  ( X  x.  A
) ) ) )
187addid1d 10236 . . . . . . 7  |-  ( ph  ->  ( ( X  x.  B )  +  0 )  =  ( X  x.  B ) )
1918oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( X  x.  B )  +  0 )  -  ( X  x.  A )
)  =  ( ( X  x.  B )  -  ( X  x.  A ) ) )
2015, 17, 193eqtr2d 2662 . . . . 5  |-  ( ph  ->  ( ( ( B  x.  A )  -  ( X  x.  A
) )  +  ( ( X  x.  B
)  -  ( A  x.  B ) ) )  =  ( ( X  x.  B )  -  ( X  x.  A ) ) )
211, 4, 2subdird 10487 . . . . . 6  |-  ( ph  ->  ( ( B  -  X )  x.  A
)  =  ( ( B  x.  A )  -  ( X  x.  A ) ) )
224, 2, 1subdird 10487 . . . . . 6  |-  ( ph  ->  ( ( X  -  A )  x.  B
)  =  ( ( X  x.  B )  -  ( A  x.  B ) ) )
2321, 22oveq12d 6668 . . . . 5  |-  ( ph  ->  ( ( ( B  -  X )  x.  A )  +  ( ( X  -  A
)  x.  B ) )  =  ( ( ( B  x.  A
)  -  ( X  x.  A ) )  +  ( ( X  x.  B )  -  ( A  x.  B
) ) ) )
244, 1, 2subdid 10486 . . . . 5  |-  ( ph  ->  ( X  x.  ( B  -  A )
)  =  ( ( X  x.  B )  -  ( X  x.  A ) ) )
2520, 23, 243eqtr4rd 2667 . . . 4  |-  ( ph  ->  ( X  x.  ( B  -  A )
)  =  ( ( ( B  -  X
)  x.  A )  +  ( ( X  -  A )  x.  B ) ) )
2625oveq1d 6665 . . 3  |-  ( ph  ->  ( ( X  x.  ( B  -  A
) )  /  ( B  -  A )
)  =  ( ( ( ( B  -  X )  x.  A
)  +  ( ( X  -  A )  x.  B ) )  /  ( B  -  A ) ) )
271, 4subcld 10392 . . . . 5  |-  ( ph  ->  ( B  -  X
)  e.  CC )
2827, 2mulcld 10060 . . . 4  |-  ( ph  ->  ( ( B  -  X )  x.  A
)  e.  CC )
294, 2subcld 10392 . . . . 5  |-  ( ph  ->  ( X  -  A
)  e.  CC )
3029, 1mulcld 10060 . . . 4  |-  ( ph  ->  ( ( X  -  A )  x.  B
)  e.  CC )
311, 2subcld 10392 . . . 4  |-  ( ph  ->  ( B  -  A
)  e.  CC )
32 bj-bary1.neq . . . . . 6  |-  ( ph  ->  A  =/=  B )
3332necomd 2849 . . . . 5  |-  ( ph  ->  B  =/=  A )
341, 2, 33subne0d 10401 . . . 4  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
3528, 30, 31, 34divdird 10839 . . 3  |-  ( ph  ->  ( ( ( ( B  -  X )  x.  A )  +  ( ( X  -  A )  x.  B
) )  /  ( B  -  A )
)  =  ( ( ( ( B  -  X )  x.  A
)  /  ( B  -  A ) )  +  ( ( ( X  -  A )  x.  B )  / 
( B  -  A
) ) ) )
3626, 35eqtrd 2656 . 2  |-  ( ph  ->  ( ( X  x.  ( B  -  A
) )  /  ( B  -  A )
)  =  ( ( ( ( B  -  X )  x.  A
)  /  ( B  -  A ) )  +  ( ( ( X  -  A )  x.  B )  / 
( B  -  A
) ) ) )
374, 31, 34divcan4d 10807 . 2  |-  ( ph  ->  ( ( X  x.  ( B  -  A
) )  /  ( B  -  A )
)  =  X )
3827, 2, 31, 34div23d 10838 . . 3  |-  ( ph  ->  ( ( ( B  -  X )  x.  A )  /  ( B  -  A )
)  =  ( ( ( B  -  X
)  /  ( B  -  A ) )  x.  A ) )
3929, 1, 31, 34div23d 10838 . . 3  |-  ( ph  ->  ( ( ( X  -  A )  x.  B )  /  ( B  -  A )
)  =  ( ( ( X  -  A
)  /  ( B  -  A ) )  x.  B ) )
4038, 39oveq12d 6668 . 2  |-  ( ph  ->  ( ( ( ( B  -  X )  x.  A )  / 
( B  -  A
) )  +  ( ( ( X  -  A )  x.  B
)  /  ( B  -  A ) ) )  =  ( ( ( ( B  -  X )  /  ( B  -  A )
)  x.  A )  +  ( ( ( X  -  A )  /  ( B  -  A ) )  x.  B ) ) )
4136, 37, 403eqtr3d 2664 1  |-  ( ph  ->  X  =  ( ( ( ( B  -  X )  /  ( B  -  A )
)  x.  A )  +  ( ( ( X  -  A )  /  ( B  -  A ) )  x.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  bj-bary1  33162
  Copyright terms: Public domain W3C validator