| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-bary1lem1 | Structured version Visualization version Unicode version | ||
| Description: Existence and uniqueness (and actual computation) of barycentric coordinates in dimension 1 (complex line). (Contributed by BJ, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-bary1.a |
|
| bj-bary1.b |
|
| bj-bary1.x |
|
| bj-bary1.neq |
|
| bj-bary1.s |
|
| bj-bary1.t |
|
| Ref | Expression |
|---|---|
| bj-bary1lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bary1.s |
. . . . . . 7
| |
| 2 | bj-bary1.t |
. . . . . . 7
| |
| 3 | 1, 2 | pncand 10393 |
. . . . . 6
|
| 4 | oveq1 6657 |
. . . . . 6
| |
| 5 | pm5.31 612 |
. . . . . 6
| |
| 6 | 3, 4, 5 | sylancl 694 |
. . . . 5
|
| 7 | eqtr2 2642 |
. . . . . 6
| |
| 8 | 7 | eqcomd 2628 |
. . . . 5
|
| 9 | 6, 8 | syl6 35 |
. . . 4
|
| 10 | oveq1 6657 |
. . . . . . . 8
| |
| 11 | 10 | oveq1d 6665 |
. . . . . . 7
|
| 12 | eqtr 2641 |
. . . . . . 7
| |
| 13 | 11, 12 | sylan2 491 |
. . . . . 6
|
| 14 | 1cnd 10056 |
. . . . . . . . 9
| |
| 15 | bj-bary1.a |
. . . . . . . . 9
| |
| 16 | 14, 2, 15 | subdird 10487 |
. . . . . . . 8
|
| 17 | 15 | mulid2d 10058 |
. . . . . . . . 9
|
| 18 | 17 | oveq1d 6665 |
. . . . . . . 8
|
| 19 | 16, 18 | eqtrd 2656 |
. . . . . . 7
|
| 20 | 19 | oveq1d 6665 |
. . . . . 6
|
| 21 | 13, 20 | sylan9eqr 2678 |
. . . . 5
|
| 22 | 21 | ex 450 |
. . . 4
|
| 23 | 9, 22 | sylan2d 499 |
. . 3
|
| 24 | 2, 15 | mulcld 10060 |
. . . . . 6
|
| 25 | bj-bary1.b |
. . . . . . 7
| |
| 26 | 2, 25 | mulcld 10060 |
. . . . . 6
|
| 27 | 15, 24, 26 | subadd23d 10414 |
. . . . 5
|
| 28 | 2, 25, 15 | subdid 10486 |
. . . . . . 7
|
| 29 | 28 | eqcomd 2628 |
. . . . . 6
|
| 30 | 29 | oveq2d 6666 |
. . . . 5
|
| 31 | 27, 30 | eqtrd 2656 |
. . . 4
|
| 32 | 31 | eqeq2d 2632 |
. . 3
|
| 33 | 23, 32 | sylibd 229 |
. 2
|
| 34 | oveq1 6657 |
. . 3
| |
| 35 | 25, 15 | subcld 10392 |
. . . . . 6
|
| 36 | 2, 35 | mulcld 10060 |
. . . . 5
|
| 37 | 15, 36 | pncan2d 10394 |
. . . 4
|
| 38 | 37 | eqeq2d 2632 |
. . 3
|
| 39 | 34, 38 | syl5ib 234 |
. 2
|
| 40 | eqcom 2629 |
. . 3
| |
| 41 | 2, 35 | mulcomd 10061 |
. . . . 5
|
| 42 | 41 | eqeq1d 2624 |
. . . 4
|
| 43 | bj-bary1.x |
. . . . . . 7
| |
| 44 | 43, 15 | subcld 10392 |
. . . . . 6
|
| 45 | bj-bary1.neq |
. . . . . . . 8
| |
| 46 | 45 | necomd 2849 |
. . . . . . 7
|
| 47 | 25, 15, 46 | subne0d 10401 |
. . . . . 6
|
| 48 | 35, 2, 44, 47 | bj-rdiv 33156 |
. . . . 5
|
| 49 | 48 | biimpd 219 |
. . . 4
|
| 50 | 42, 49 | sylbid 230 |
. . 3
|
| 51 | 40, 50 | syl5bi 232 |
. 2
|
| 52 | 33, 39, 51 | 3syld 60 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 |
| This theorem is referenced by: bj-bary1 33162 |
| Copyright terms: Public domain | W3C validator |