Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem1 Structured version   Visualization version   Unicode version

Theorem bj-bary1lem1 33161
Description: Existence and uniqueness (and actual computation) of barycentric coordinates in dimension 1 (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a  |-  ( ph  ->  A  e.  CC )
bj-bary1.b  |-  ( ph  ->  B  e.  CC )
bj-bary1.x  |-  ( ph  ->  X  e.  CC )
bj-bary1.neq  |-  ( ph  ->  A  =/=  B )
bj-bary1.s  |-  ( ph  ->  S  e.  CC )
bj-bary1.t  |-  ( ph  ->  T  e.  CC )
Assertion
Ref Expression
bj-bary1lem1  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  ->  T  =  ( ( X  -  A )  / 
( B  -  A
) ) ) )

Proof of Theorem bj-bary1lem1
StepHypRef Expression
1 bj-bary1.s . . . . . . 7  |-  ( ph  ->  S  e.  CC )
2 bj-bary1.t . . . . . . 7  |-  ( ph  ->  T  e.  CC )
31, 2pncand 10393 . . . . . 6  |-  ( ph  ->  ( ( S  +  T )  -  T
)  =  S )
4 oveq1 6657 . . . . . 6  |-  ( ( S  +  T )  =  1  ->  (
( S  +  T
)  -  T )  =  ( 1  -  T ) )
5 pm5.31 612 . . . . . 6  |-  ( ( ( ( S  +  T )  -  T
)  =  S  /\  ( ( S  +  T )  =  1  ->  ( ( S  +  T )  -  T )  =  ( 1  -  T ) ) )  ->  (
( S  +  T
)  =  1  -> 
( ( ( S  +  T )  -  T )  =  ( 1  -  T )  /\  ( ( S  +  T )  -  T )  =  S ) ) )
63, 4, 5sylancl 694 . . . . 5  |-  ( ph  ->  ( ( S  +  T )  =  1  ->  ( ( ( S  +  T )  -  T )  =  ( 1  -  T
)  /\  ( ( S  +  T )  -  T )  =  S ) ) )
7 eqtr2 2642 . . . . . 6  |-  ( ( ( ( S  +  T )  -  T
)  =  ( 1  -  T )  /\  ( ( S  +  T )  -  T
)  =  S )  ->  ( 1  -  T )  =  S )
87eqcomd 2628 . . . . 5  |-  ( ( ( ( S  +  T )  -  T
)  =  ( 1  -  T )  /\  ( ( S  +  T )  -  T
)  =  S )  ->  S  =  ( 1  -  T ) )
96, 8syl6 35 . . . 4  |-  ( ph  ->  ( ( S  +  T )  =  1  ->  S  =  ( 1  -  T ) ) )
10 oveq1 6657 . . . . . . . 8  |-  ( S  =  ( 1  -  T )  ->  ( S  x.  A )  =  ( ( 1  -  T )  x.  A ) )
1110oveq1d 6665 . . . . . . 7  |-  ( S  =  ( 1  -  T )  ->  (
( S  x.  A
)  +  ( T  x.  B ) )  =  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) ) )
12 eqtr 2641 . . . . . . 7  |-  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( ( S  x.  A )  +  ( T  x.  B ) )  =  ( ( ( 1  -  T
)  x.  A )  +  ( T  x.  B ) ) )  ->  X  =  ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  B ) ) )
1311, 12sylan2 491 . . . . . 6  |-  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  S  =  ( 1  -  T ) )  ->  X  =  ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  B ) ) )
14 1cnd 10056 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
15 bj-bary1.a . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
1614, 2, 15subdird 10487 . . . . . . . 8  |-  ( ph  ->  ( ( 1  -  T )  x.  A
)  =  ( ( 1  x.  A )  -  ( T  x.  A ) ) )
1715mulid2d 10058 . . . . . . . . 9  |-  ( ph  ->  ( 1  x.  A
)  =  A )
1817oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( 1  x.  A )  -  ( T  x.  A )
)  =  ( A  -  ( T  x.  A ) ) )
1916, 18eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( 1  -  T )  x.  A
)  =  ( A  -  ( T  x.  A ) ) )
2019oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B ) )  =  ( ( A  -  ( T  x.  A ) )  +  ( T  x.  B ) ) )
2113, 20sylan9eqr 2678 . . . . 5  |-  ( (
ph  /\  ( X  =  ( ( S  x.  A )  +  ( T  x.  B
) )  /\  S  =  ( 1  -  T ) ) )  ->  X  =  ( ( A  -  ( T  x.  A )
)  +  ( T  x.  B ) ) )
2221ex 450 . . . 4  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  S  =  ( 1  -  T
) )  ->  X  =  ( ( A  -  ( T  x.  A ) )  +  ( T  x.  B
) ) ) )
239, 22sylan2d 499 . . 3  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  ->  X  =  ( ( A  -  ( T  x.  A ) )  +  ( T  x.  B
) ) ) )
242, 15mulcld 10060 . . . . . 6  |-  ( ph  ->  ( T  x.  A
)  e.  CC )
25 bj-bary1.b . . . . . . 7  |-  ( ph  ->  B  e.  CC )
262, 25mulcld 10060 . . . . . 6  |-  ( ph  ->  ( T  x.  B
)  e.  CC )
2715, 24, 26subadd23d 10414 . . . . 5  |-  ( ph  ->  ( ( A  -  ( T  x.  A
) )  +  ( T  x.  B ) )  =  ( A  +  ( ( T  x.  B )  -  ( T  x.  A
) ) ) )
282, 25, 15subdid 10486 . . . . . . 7  |-  ( ph  ->  ( T  x.  ( B  -  A )
)  =  ( ( T  x.  B )  -  ( T  x.  A ) ) )
2928eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( ( T  x.  B )  -  ( T  x.  A )
)  =  ( T  x.  ( B  -  A ) ) )
3029oveq2d 6666 . . . . 5  |-  ( ph  ->  ( A  +  ( ( T  x.  B
)  -  ( T  x.  A ) ) )  =  ( A  +  ( T  x.  ( B  -  A
) ) ) )
3127, 30eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( A  -  ( T  x.  A
) )  +  ( T  x.  B ) )  =  ( A  +  ( T  x.  ( B  -  A
) ) ) )
3231eqeq2d 2632 . . 3  |-  ( ph  ->  ( X  =  ( ( A  -  ( T  x.  A )
)  +  ( T  x.  B ) )  <-> 
X  =  ( A  +  ( T  x.  ( B  -  A
) ) ) ) )
3323, 32sylibd 229 . 2  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  ->  X  =  ( A  +  ( T  x.  ( B  -  A )
) ) ) )
34 oveq1 6657 . . 3  |-  ( X  =  ( A  +  ( T  x.  ( B  -  A )
) )  ->  ( X  -  A )  =  ( ( A  +  ( T  x.  ( B  -  A
) ) )  -  A ) )
3525, 15subcld 10392 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  CC )
362, 35mulcld 10060 . . . . 5  |-  ( ph  ->  ( T  x.  ( B  -  A )
)  e.  CC )
3715, 36pncan2d 10394 . . . 4  |-  ( ph  ->  ( ( A  +  ( T  x.  ( B  -  A )
) )  -  A
)  =  ( T  x.  ( B  -  A ) ) )
3837eqeq2d 2632 . . 3  |-  ( ph  ->  ( ( X  -  A )  =  ( ( A  +  ( T  x.  ( B  -  A ) ) )  -  A )  <-> 
( X  -  A
)  =  ( T  x.  ( B  -  A ) ) ) )
3934, 38syl5ib 234 . 2  |-  ( ph  ->  ( X  =  ( A  +  ( T  x.  ( B  -  A ) ) )  ->  ( X  -  A )  =  ( T  x.  ( B  -  A ) ) ) )
40 eqcom 2629 . . 3  |-  ( ( X  -  A )  =  ( T  x.  ( B  -  A
) )  <->  ( T  x.  ( B  -  A
) )  =  ( X  -  A ) )
412, 35mulcomd 10061 . . . . 5  |-  ( ph  ->  ( T  x.  ( B  -  A )
)  =  ( ( B  -  A )  x.  T ) )
4241eqeq1d 2624 . . . 4  |-  ( ph  ->  ( ( T  x.  ( B  -  A
) )  =  ( X  -  A )  <-> 
( ( B  -  A )  x.  T
)  =  ( X  -  A ) ) )
43 bj-bary1.x . . . . . . 7  |-  ( ph  ->  X  e.  CC )
4443, 15subcld 10392 . . . . . 6  |-  ( ph  ->  ( X  -  A
)  e.  CC )
45 bj-bary1.neq . . . . . . . 8  |-  ( ph  ->  A  =/=  B )
4645necomd 2849 . . . . . . 7  |-  ( ph  ->  B  =/=  A )
4725, 15, 46subne0d 10401 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
4835, 2, 44, 47bj-rdiv 33156 . . . . 5  |-  ( ph  ->  ( ( ( B  -  A )  x.  T )  =  ( X  -  A )  <-> 
T  =  ( ( X  -  A )  /  ( B  -  A ) ) ) )
4948biimpd 219 . . . 4  |-  ( ph  ->  ( ( ( B  -  A )  x.  T )  =  ( X  -  A )  ->  T  =  ( ( X  -  A
)  /  ( B  -  A ) ) ) )
5042, 49sylbid 230 . . 3  |-  ( ph  ->  ( ( T  x.  ( B  -  A
) )  =  ( X  -  A )  ->  T  =  ( ( X  -  A
)  /  ( B  -  A ) ) ) )
5140, 50syl5bi 232 . 2  |-  ( ph  ->  ( ( X  -  A )  =  ( T  x.  ( B  -  A ) )  ->  T  =  ( ( X  -  A
)  /  ( B  -  A ) ) ) )
5233, 39, 513syld 60 1  |-  ( ph  ->  ( ( X  =  ( ( S  x.  A )  +  ( T  x.  B ) )  /\  ( S  +  T )  =  1 )  ->  T  =  ( ( X  -  A )  / 
( B  -  A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  bj-bary1  33162
  Copyright terms: Public domain W3C validator