MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1a Structured version   Visualization version   Unicode version

Theorem cantnflem1a 8582
Description: Lemma for cantnf 8590. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
oemapval.f  |-  ( ph  ->  F  e.  S )
oemapval.g  |-  ( ph  ->  G  e.  S )
oemapvali.r  |-  ( ph  ->  F T G )
oemapvali.x  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
Assertion
Ref Expression
cantnflem1a  |-  ( ph  ->  X  e.  ( G supp  (/) ) )
Distinct variable groups:    w, c, x, y, z, B    A, c, w, x, y, z    T, c    w, F, x, y, z    S, c, x, y, z    G, c, w, x, y, z    ph, x, y, z    w, X, x, y, z    F, c    ph, c
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)    X( c)

Proof of Theorem cantnflem1a
StepHypRef Expression
1 cantnfs.s . . . 4  |-  S  =  dom  ( A CNF  B
)
2 cantnfs.a . . . 4  |-  ( ph  ->  A  e.  On )
3 cantnfs.b . . . 4  |-  ( ph  ->  B  e.  On )
4 oemapval.t . . . 4  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
5 oemapval.f . . . 4  |-  ( ph  ->  F  e.  S )
6 oemapval.g . . . 4  |-  ( ph  ->  G  e.  S )
7 oemapvali.r . . . 4  |-  ( ph  ->  F T G )
8 oemapvali.x . . . 4  |-  X  = 
U. { c  e.  B  |  ( F `
 c )  e.  ( G `  c
) }
91, 2, 3, 4, 5, 6, 7, 8oemapvali 8581 . . 3  |-  ( ph  ->  ( X  e.  B  /\  ( F `  X
)  e.  ( G `
 X )  /\  A. w  e.  B  ( X  e.  w  -> 
( F `  w
)  =  ( G `
 w ) ) ) )
109simp1d 1073 . 2  |-  ( ph  ->  X  e.  B )
119simp2d 1074 . . 3  |-  ( ph  ->  ( F `  X
)  e.  ( G `
 X ) )
12 ne0i 3921 . . 3  |-  ( ( F `  X )  e.  ( G `  X )  ->  ( G `  X )  =/=  (/) )
1311, 12syl 17 . 2  |-  ( ph  ->  ( G `  X
)  =/=  (/) )
141, 2, 3cantnfs 8563 . . . . . 6  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  G finSupp 
(/) ) ) )
156, 14mpbid 222 . . . . 5  |-  ( ph  ->  ( G : B --> A  /\  G finSupp  (/) ) )
1615simpld 475 . . . 4  |-  ( ph  ->  G : B --> A )
17 ffn 6045 . . . 4  |-  ( G : B --> A  ->  G  Fn  B )
1816, 17syl 17 . . 3  |-  ( ph  ->  G  Fn  B )
19 0ex 4790 . . . 4  |-  (/)  e.  _V
2019a1i 11 . . 3  |-  ( ph  -> 
(/)  e.  _V )
21 elsuppfn 7303 . . 3  |-  ( ( G  Fn  B  /\  B  e.  On  /\  (/)  e.  _V )  ->  ( X  e.  ( G supp  (/) )  <->  ( X  e.  B  /\  ( G `  X )  =/=  (/) ) ) )
2218, 3, 20, 21syl3anc 1326 . 2  |-  ( ph  ->  ( X  e.  ( G supp  (/) )  <->  ( X  e.  B  /\  ( G `  X )  =/=  (/) ) ) )
2310, 13, 22mpbir2and 957 1  |-  ( ph  ->  X  e.  ( G supp  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   (/)c0 3915   U.cuni 4436   class class class wbr 4653   {copab 4712   dom cdm 5114   Oncon0 5723    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   finSupp cfsupp 8275   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fsupp 8276  df-cnf 8559
This theorem is referenced by:  cantnflem1b  8583  cantnflem1d  8585  cantnflem1  8586
  Copyright terms: Public domain W3C validator