MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harval2 Structured version   Visualization version   Unicode version

Theorem harval2 8823
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harval2  |-  ( A  e.  dom  card  ->  (har
`  A )  = 
|^| { x  e.  On  |  A  ~<  x }
)
Distinct variable group:    x, A

Proof of Theorem harval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 harval 8467 . . . . . . 7  |-  ( A  e.  dom  card  ->  (har
`  A )  =  { y  e.  On  |  y  ~<_  A }
)
21adantr 481 . . . . . 6  |-  ( ( A  e.  dom  card  /\  ( x  e.  On  /\  A  ~<  x )
)  ->  (har `  A
)  =  { y  e.  On  |  y  ~<_  A } )
3 domsdomtr 8095 . . . . . . . . . . . . 13  |-  ( ( y  ~<_  A  /\  A  ~<  x )  ->  y  ~<  x )
4 sdomel 8107 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  x  e.  On )  ->  ( y  ~<  x  ->  y  e.  x ) )
53, 4syl5 34 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  x  e.  On )  ->  ( ( y  ~<_  A  /\  A  ~<  x
)  ->  y  e.  x ) )
65imp 445 . . . . . . . . . . 11  |-  ( ( ( y  e.  On  /\  x  e.  On )  /\  ( y  ~<_  A  /\  A  ~<  x
) )  ->  y  e.  x )
76an4s 869 . . . . . . . . . 10  |-  ( ( ( y  e.  On  /\  y  ~<_  A )  /\  ( x  e.  On  /\  A  ~<  x )
)  ->  y  e.  x )
87ancoms 469 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  A  ~<  x )  /\  ( y  e.  On  /\  y  ~<_  A ) )  ->  y  e.  x
)
983impb 1260 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  A  ~<  x )  /\  y  e.  On  /\  y  ~<_  A )  -> 
y  e.  x )
109rabssdv 3682 . . . . . . 7  |-  ( ( x  e.  On  /\  A  ~<  x )  ->  { y  e.  On  |  y  ~<_  A }  C_  x )
1110adantl 482 . . . . . 6  |-  ( ( A  e.  dom  card  /\  ( x  e.  On  /\  A  ~<  x )
)  ->  { y  e.  On  |  y  ~<_  A }  C_  x )
122, 11eqsstrd 3639 . . . . 5  |-  ( ( A  e.  dom  card  /\  ( x  e.  On  /\  A  ~<  x )
)  ->  (har `  A
)  C_  x )
1312expr 643 . . . 4  |-  ( ( A  e.  dom  card  /\  x  e.  On )  ->  ( A  ~<  x  ->  (har `  A
)  C_  x )
)
1413ralrimiva 2966 . . 3  |-  ( A  e.  dom  card  ->  A. x  e.  On  ( A  ~<  x  ->  (har `  A )  C_  x
) )
15 ssintrab 4500 . . 3  |-  ( (har
`  A )  C_  |^|
{ x  e.  On  |  A  ~<  x }  <->  A. x  e.  On  ( A  ~<  x  ->  (har `  A )  C_  x
) )
1614, 15sylibr 224 . 2  |-  ( A  e.  dom  card  ->  (har
`  A )  C_  |^|
{ x  e.  On  |  A  ~<  x }
)
17 harcl 8466 . . . . 5  |-  (har `  A )  e.  On
1817a1i 11 . . . 4  |-  ( A  e.  dom  card  ->  (har
`  A )  e.  On )
19 harsdom 8821 . . . 4  |-  ( A  e.  dom  card  ->  A 
~<  (har `  A )
)
20 breq2 4657 . . . . 5  |-  ( x  =  (har `  A
)  ->  ( A  ~<  x  <->  A  ~<  (har `  A ) ) )
2120elrab 3363 . . . 4  |-  ( (har
`  A )  e. 
{ x  e.  On  |  A  ~<  x }  <->  ( (har `  A )  e.  On  /\  A  ~<  (har
`  A ) ) )
2218, 19, 21sylanbrc 698 . . 3  |-  ( A  e.  dom  card  ->  (har
`  A )  e. 
{ x  e.  On  |  A  ~<  x }
)
23 intss1 4492 . . 3  |-  ( (har
`  A )  e. 
{ x  e.  On  |  A  ~<  x }  ->  |^| { x  e.  On  |  A  ~<  x }  C_  (har `  A
) )
2422, 23syl 17 . 2  |-  ( A  e.  dom  card  ->  |^|
{ x  e.  On  |  A  ~<  x }  C_  (har `  A )
)
2516, 24eqssd 3620 1  |-  ( A  e.  dom  card  ->  (har
`  A )  = 
|^| { x  e.  On  |  A  ~<  x }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   |^|cint 4475   class class class wbr 4653   dom cdm 5114   Oncon0 5723   ` cfv 5888    ~<_ cdom 7953    ~< csdm 7954  harchar 8461   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-card 8765
This theorem is referenced by:  alephnbtwn  8894
  Copyright terms: Public domain W3C validator