MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprclem Structured version   Visualization version   Unicode version

Theorem cardprclem 8805
Description: Lemma for cardprc 8806. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
cardprclem.1  |-  A  =  { x  |  (
card `  x )  =  x }
Assertion
Ref Expression
cardprclem  |-  -.  A  e.  _V
Distinct variable group:    x, A

Proof of Theorem cardprclem
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardprclem.1 . . . . . . . . 9  |-  A  =  { x  |  (
card `  x )  =  x }
21eleq2i 2693 . . . . . . . 8  |-  ( x  e.  A  <->  x  e.  { x  |  ( card `  x )  =  x } )
3 abid 2610 . . . . . . . 8  |-  ( x  e.  { x  |  ( card `  x
)  =  x }  <->  (
card `  x )  =  x )
4 iscard 8801 . . . . . . . 8  |-  ( (
card `  x )  =  x  <->  ( x  e.  On  /\  A. y  e.  x  y  ~<  x ) )
52, 3, 43bitri 286 . . . . . . 7  |-  ( x  e.  A  <->  ( x  e.  On  /\  A. y  e.  x  y  ~<  x ) )
65simplbi 476 . . . . . 6  |-  ( x  e.  A  ->  x  e.  On )
76ssriv 3607 . . . . 5  |-  A  C_  On
8 ssonuni 6986 . . . . 5  |-  ( A  e.  _V  ->  ( A  C_  On  ->  U. A  e.  On ) )
97, 8mpi 20 . . . 4  |-  ( A  e.  _V  ->  U. A  e.  On )
10 domrefg 7990 . . . . 5  |-  ( U. A  e.  On  ->  U. A  ~<_  U. A )
119, 10syl 17 . . . 4  |-  ( A  e.  _V  ->  U. A  ~<_  U. A )
12 elharval 8468 . . . 4  |-  ( U. A  e.  (har `  U. A )  <->  ( U. A  e.  On  /\  U. A  ~<_  U. A ) )
139, 11, 12sylanbrc 698 . . 3  |-  ( A  e.  _V  ->  U. A  e.  (har `  U. A ) )
147sseli 3599 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  On )
15 domrefg 7990 . . . . . . . . . 10  |-  ( z  e.  On  ->  z  ~<_  z )
1615ancli 574 . . . . . . . . 9  |-  ( z  e.  On  ->  (
z  e.  On  /\  z  ~<_  z ) )
17 elharval 8468 . . . . . . . . 9  |-  ( z  e.  (har `  z
)  <->  ( z  e.  On  /\  z  ~<_  z ) )
1816, 17sylibr 224 . . . . . . . 8  |-  ( z  e.  On  ->  z  e.  (har `  z )
)
1914, 18syl 17 . . . . . . 7  |-  ( z  e.  A  ->  z  e.  (har `  z )
)
20 harcard 8804 . . . . . . . 8  |-  ( card `  (har `  z )
)  =  (har `  z )
21 fvex 6201 . . . . . . . . 9  |-  (har `  z )  e.  _V
22 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  (har `  z
)  ->  ( card `  x )  =  (
card `  (har `  z
) ) )
23 id 22 . . . . . . . . . 10  |-  ( x  =  (har `  z
)  ->  x  =  (har `  z ) )
2422, 23eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  (har `  z
)  ->  ( ( card `  x )  =  x  <->  ( card `  (har `  z ) )  =  (har `  z )
) )
2521, 24, 1elab2 3354 . . . . . . . 8  |-  ( (har
`  z )  e.  A  <->  ( card `  (har `  z ) )  =  (har `  z )
)
2620, 25mpbir 221 . . . . . . 7  |-  (har `  z )  e.  A
27 eleq2 2690 . . . . . . . . 9  |-  ( w  =  (har `  z
)  ->  ( z  e.  w  <->  z  e.  (har
`  z ) ) )
28 eleq1 2689 . . . . . . . . 9  |-  ( w  =  (har `  z
)  ->  ( w  e.  A  <->  (har `  z )  e.  A ) )
2927, 28anbi12d 747 . . . . . . . 8  |-  ( w  =  (har `  z
)  ->  ( (
z  e.  w  /\  w  e.  A )  <->  ( z  e.  (har `  z )  /\  (har `  z )  e.  A
) ) )
3021, 29spcev 3300 . . . . . . 7  |-  ( ( z  e.  (har `  z )  /\  (har `  z )  e.  A
)  ->  E. w
( z  e.  w  /\  w  e.  A
) )
3119, 26, 30sylancl 694 . . . . . 6  |-  ( z  e.  A  ->  E. w
( z  e.  w  /\  w  e.  A
) )
32 eluni 4439 . . . . . 6  |-  ( z  e.  U. A  <->  E. w
( z  e.  w  /\  w  e.  A
) )
3331, 32sylibr 224 . . . . 5  |-  ( z  e.  A  ->  z  e.  U. A )
3433ssriv 3607 . . . 4  |-  A  C_  U. A
35 harcard 8804 . . . . 5  |-  ( card `  (har `  U. A ) )  =  (har `  U. A )
36 fvex 6201 . . . . . 6  |-  (har `  U. A )  e.  _V
37 fveq2 6191 . . . . . . 7  |-  ( x  =  (har `  U. A )  ->  ( card `  x )  =  ( card `  (har ` 
U. A ) ) )
38 id 22 . . . . . . 7  |-  ( x  =  (har `  U. A )  ->  x  =  (har `  U. A ) )
3937, 38eqeq12d 2637 . . . . . 6  |-  ( x  =  (har `  U. A )  ->  (
( card `  x )  =  x  <->  ( card `  (har ` 
U. A ) )  =  (har `  U. A ) ) )
4036, 39, 1elab2 3354 . . . . 5  |-  ( (har
`  U. A )  e.  A  <->  ( card `  (har ` 
U. A ) )  =  (har `  U. A ) )
4135, 40mpbir 221 . . . 4  |-  (har `  U. A )  e.  A
4234, 41sselii 3600 . . 3  |-  (har `  U. A )  e.  U. A
4313, 42jctir 561 . 2  |-  ( A  e.  _V  ->  ( U. A  e.  (har ` 
U. A )  /\  (har `  U. A )  e.  U. A ) )
44 eloni 5733 . . 3  |-  ( U. A  e.  On  ->  Ord  U. A )
45 ordn2lp 5743 . . 3  |-  ( Ord  U. A  ->  -.  ( U. A  e.  (har ` 
U. A )  /\  (har `  U. A )  e.  U. A ) )
469, 44, 453syl 18 . 2  |-  ( A  e.  _V  ->  -.  ( U. A  e.  (har
`  U. A )  /\  (har `  U. A )  e.  U. A ) )
4743, 46pm2.65i 185 1  |-  -.  A  e.  _V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653   Ord word 5722   Oncon0 5723   ` cfv 5888    ~<_ cdom 7953    ~< csdm 7954  harchar 8461   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-card 8765
This theorem is referenced by:  cardprc  8806
  Copyright terms: Public domain W3C validator