| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardprclem | Structured version Visualization version Unicode version | ||
| Description: Lemma for cardprc 8806. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| cardprclem.1 |
|
| Ref | Expression |
|---|---|
| cardprclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardprclem.1 |
. . . . . . . . 9
| |
| 2 | 1 | eleq2i 2693 |
. . . . . . . 8
|
| 3 | abid 2610 |
. . . . . . . 8
| |
| 4 | iscard 8801 |
. . . . . . . 8
| |
| 5 | 2, 3, 4 | 3bitri 286 |
. . . . . . 7
|
| 6 | 5 | simplbi 476 |
. . . . . 6
|
| 7 | 6 | ssriv 3607 |
. . . . 5
|
| 8 | ssonuni 6986 |
. . . . 5
| |
| 9 | 7, 8 | mpi 20 |
. . . 4
|
| 10 | domrefg 7990 |
. . . . 5
| |
| 11 | 9, 10 | syl 17 |
. . . 4
|
| 12 | elharval 8468 |
. . . 4
| |
| 13 | 9, 11, 12 | sylanbrc 698 |
. . 3
|
| 14 | 7 | sseli 3599 |
. . . . . . . 8
|
| 15 | domrefg 7990 |
. . . . . . . . . 10
| |
| 16 | 15 | ancli 574 |
. . . . . . . . 9
|
| 17 | elharval 8468 |
. . . . . . . . 9
| |
| 18 | 16, 17 | sylibr 224 |
. . . . . . . 8
|
| 19 | 14, 18 | syl 17 |
. . . . . . 7
|
| 20 | harcard 8804 |
. . . . . . . 8
| |
| 21 | fvex 6201 |
. . . . . . . . 9
| |
| 22 | fveq2 6191 |
. . . . . . . . . 10
| |
| 23 | id 22 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | eqeq12d 2637 |
. . . . . . . . 9
|
| 25 | 21, 24, 1 | elab2 3354 |
. . . . . . . 8
|
| 26 | 20, 25 | mpbir 221 |
. . . . . . 7
|
| 27 | eleq2 2690 |
. . . . . . . . 9
| |
| 28 | eleq1 2689 |
. . . . . . . . 9
| |
| 29 | 27, 28 | anbi12d 747 |
. . . . . . . 8
|
| 30 | 21, 29 | spcev 3300 |
. . . . . . 7
|
| 31 | 19, 26, 30 | sylancl 694 |
. . . . . 6
|
| 32 | eluni 4439 |
. . . . . 6
| |
| 33 | 31, 32 | sylibr 224 |
. . . . 5
|
| 34 | 33 | ssriv 3607 |
. . . 4
|
| 35 | harcard 8804 |
. . . . 5
| |
| 36 | fvex 6201 |
. . . . . 6
| |
| 37 | fveq2 6191 |
. . . . . . 7
| |
| 38 | id 22 |
. . . . . . 7
| |
| 39 | 37, 38 | eqeq12d 2637 |
. . . . . 6
|
| 40 | 36, 39, 1 | elab2 3354 |
. . . . 5
|
| 41 | 35, 40 | mpbir 221 |
. . . 4
|
| 42 | 34, 41 | sselii 3600 |
. . 3
|
| 43 | 13, 42 | jctir 561 |
. 2
|
| 44 | eloni 5733 |
. . 3
| |
| 45 | ordn2lp 5743 |
. . 3
| |
| 46 | 9, 44, 45 | 3syl 18 |
. 2
|
| 47 | 43, 46 | pm2.65i 185 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-wrecs 7407 df-recs 7468 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-oi 8415 df-har 8463 df-card 8765 |
| This theorem is referenced by: cardprc 8806 |
| Copyright terms: Public domain | W3C validator |