| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harcard | Structured version Visualization version Unicode version | ||
| Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| harcard |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 8466 |
. 2
| |
| 2 | harndom 8469 |
. . . . . . 7
| |
| 3 | simpll 790 |
. . . . . . . . 9
| |
| 4 | simpr 477 |
. . . . . . . . . . 11
| |
| 5 | elharval 8468 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | sylib 208 |
. . . . . . . . . 10
|
| 7 | 6 | simpld 475 |
. . . . . . . . 9
|
| 8 | ontri1 5757 |
. . . . . . . . 9
| |
| 9 | 3, 7, 8 | syl2anc 693 |
. . . . . . . 8
|
| 10 | simpllr 799 |
. . . . . . . . . 10
| |
| 11 | vex 3203 |
. . . . . . . . . . . 12
| |
| 12 | ssdomg 8001 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . . . 11
|
| 14 | 6 | simprd 479 |
. . . . . . . . . . 11
|
| 15 | domtr 8009 |
. . . . . . . . . . 11
| |
| 16 | 13, 14, 15 | syl2anr 495 |
. . . . . . . . . 10
|
| 17 | endomtr 8014 |
. . . . . . . . . 10
| |
| 18 | 10, 16, 17 | syl2anc 693 |
. . . . . . . . 9
|
| 19 | 18 | ex 450 |
. . . . . . . 8
|
| 20 | 9, 19 | sylbird 250 |
. . . . . . 7
|
| 21 | 2, 20 | mt3i 141 |
. . . . . 6
|
| 22 | 21 | ex 450 |
. . . . 5
|
| 23 | 22 | ssrdv 3609 |
. . . 4
|
| 24 | 23 | ex 450 |
. . 3
|
| 25 | 24 | rgen 2922 |
. 2
|
| 26 | iscard2 8802 |
. 2
| |
| 27 | 1, 25, 26 | mpbir2an 955 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-wrecs 7407 df-recs 7468 df-er 7742 df-en 7956 df-dom 7957 df-oi 8415 df-har 8463 df-card 8765 |
| This theorem is referenced by: cardprclem 8805 alephcard 8893 pwcfsdom 9405 hargch 9495 |
| Copyright terms: Public domain | W3C validator |