| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sharhght | Structured version Visualization version Unicode version | ||
| Description: Let |
| Ref | Expression |
|---|---|
| sharhght.sigar |
|
| sharhght.a |
|
| sharhght.b |
|
| Ref | Expression |
|---|---|
| sharhght |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sharhght.a |
. . . . . . . . 9
| |
| 2 | 1 | simp3d 1075 |
. . . . . . . 8
|
| 3 | 1 | simp1d 1073 |
. . . . . . . 8
|
| 4 | 2, 3 | subcld 10392 |
. . . . . . 7
|
| 5 | 4 | adantr 481 |
. . . . . 6
|
| 6 | sharhght.b |
. . . . . . . . 9
| |
| 7 | 6 | simpld 475 |
. . . . . . . 8
|
| 8 | 7, 3 | subcld 10392 |
. . . . . . 7
|
| 9 | 8 | adantr 481 |
. . . . . 6
|
| 10 | sharhght.sigar |
. . . . . . 7
| |
| 11 | 10 | sigarim 41040 |
. . . . . 6
|
| 12 | 5, 9, 11 | syl2anc 693 |
. . . . 5
|
| 13 | 12 | recnd 10068 |
. . . 4
|
| 14 | 13 | mul01d 10235 |
. . 3
|
| 15 | 1 | simp2d 1074 |
. . . . . 6
|
| 16 | 15 | adantr 481 |
. . . . 5
|
| 17 | simpr 477 |
. . . . 5
| |
| 18 | 16, 17 | subeq0bd 10456 |
. . . 4
|
| 19 | 18 | oveq2d 6666 |
. . 3
|
| 20 | 2, 15 | subcld 10392 |
. . . . . . . 8
|
| 21 | 20 | adantr 481 |
. . . . . . 7
|
| 22 | 7, 15 | subcld 10392 |
. . . . . . . 8
|
| 23 | 22 | adantr 481 |
. . . . . . 7
|
| 24 | 10 | sigarval 41039 |
. . . . . . 7
|
| 25 | 21, 23, 24 | syl2anc 693 |
. . . . . 6
|
| 26 | 7 | adantr 481 |
. . . . . . . . . 10
|
| 27 | 17 | eqcomd 2628 |
. . . . . . . . . 10
|
| 28 | 26, 27 | subeq0bd 10456 |
. . . . . . . . 9
|
| 29 | 28 | oveq2d 6666 |
. . . . . . . 8
|
| 30 | 21 | cjcld 13936 |
. . . . . . . . 9
|
| 31 | 30 | mul01d 10235 |
. . . . . . . 8
|
| 32 | 29, 31 | eqtrd 2656 |
. . . . . . 7
|
| 33 | 32 | fveq2d 6195 |
. . . . . 6
|
| 34 | 0red 10041 |
. . . . . . 7
| |
| 35 | 34 | reim0d 13965 |
. . . . . 6
|
| 36 | 25, 33, 35 | 3eqtrd 2660 |
. . . . 5
|
| 37 | 36 | oveq1d 6665 |
. . . 4
|
| 38 | 3 | adantr 481 |
. . . . . 6
|
| 39 | 38, 26 | subcld 10392 |
. . . . 5
|
| 40 | 39 | mul02d 10234 |
. . . 4
|
| 41 | 37, 40 | eqtrd 2656 |
. . 3
|
| 42 | 14, 19, 41 | 3eqtr4d 2666 |
. 2
|
| 43 | 2 | adantr 481 |
. . . . . . . . 9
|
| 44 | 15 | adantr 481 |
. . . . . . . . 9
|
| 45 | 3 | adantr 481 |
. . . . . . . . 9
|
| 46 | 43, 44, 45 | npncand 10416 |
. . . . . . . 8
|
| 47 | 46 | oveq1d 6665 |
. . . . . . 7
|
| 48 | 43, 44 | subcld 10392 |
. . . . . . . 8
|
| 49 | 8 | adantr 481 |
. . . . . . . 8
|
| 50 | 44, 45 | subcld 10392 |
. . . . . . . 8
|
| 51 | 10 | sigaraf 41042 |
. . . . . . . 8
|
| 52 | 48, 49, 50, 51 | syl3anc 1326 |
. . . . . . 7
|
| 53 | 47, 52 | eqtr3d 2658 |
. . . . . 6
|
| 54 | 6 | simprd 479 |
. . . . . . . . 9
|
| 55 | 54 | adantr 481 |
. . . . . . . 8
|
| 56 | 7 | adantr 481 |
. . . . . . . . 9
|
| 57 | 10 | sigarperm 41049 |
. . . . . . . . 9
|
| 58 | 45, 44, 56, 57 | syl3anc 1326 |
. . . . . . . 8
|
| 59 | 55, 58 | eqtr3d 2658 |
. . . . . . 7
|
| 60 | 59 | oveq2d 6666 |
. . . . . 6
|
| 61 | 10 | sigarim 41040 |
. . . . . . . . 9
|
| 62 | 48, 49, 61 | syl2anc 693 |
. . . . . . . 8
|
| 63 | 62 | recnd 10068 |
. . . . . . 7
|
| 64 | 63 | addid1d 10236 |
. . . . . 6
|
| 65 | 53, 60, 64 | 3eqtr2d 2662 |
. . . . 5
|
| 66 | 44, 56 | negsubdi2d 10408 |
. . . . . . . . . . . 12
|
| 67 | 66 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 68 | 67 | oveq1d 6665 |
. . . . . . . . . 10
|
| 69 | 44, 56 | subcld 10392 |
. . . . . . . . . . 11
|
| 70 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 71 | 70 | neqned 2801 |
. . . . . . . . . . . 12
|
| 72 | 44, 56, 71 | subne0d 10401 |
. . . . . . . . . . 11
|
| 73 | 69, 69, 72 | divnegd 10814 |
. . . . . . . . . 10
|
| 74 | 69, 72 | dividd 10799 |
. . . . . . . . . . 11
|
| 75 | 74 | negeqd 10275 |
. . . . . . . . . 10
|
| 76 | 68, 73, 75 | 3eqtr2d 2662 |
. . . . . . . . 9
|
| 77 | 76 | oveq1d 6665 |
. . . . . . . 8
|
| 78 | 45, 56 | subcld 10392 |
. . . . . . . . 9
|
| 79 | 78 | mulm1d 10482 |
. . . . . . . 8
|
| 80 | 45, 56 | negsubdi2d 10408 |
. . . . . . . 8
|
| 81 | 77, 79, 80 | 3eqtrd 2660 |
. . . . . . 7
|
| 82 | 56, 44 | subcld 10392 |
. . . . . . . 8
|
| 83 | 82, 69, 78, 72 | div32d 10824 |
. . . . . . 7
|
| 84 | 81, 83 | eqtr3d 2658 |
. . . . . 6
|
| 85 | 84 | oveq2d 6666 |
. . . . 5
|
| 86 | 56, 45, 44 | 3jca 1242 |
. . . . . . 7
|
| 87 | 10, 86, 70, 55 | sigardiv 41050 |
. . . . . 6
|
| 88 | 10 | sigarls 41046 |
. . . . . 6
|
| 89 | 48, 82, 87, 88 | syl3anc 1326 |
. . . . 5
|
| 90 | 65, 85, 89 | 3eqtrd 2660 |
. . . 4
|
| 91 | 90 | oveq1d 6665 |
. . 3
|
| 92 | 10 | sigarim 41040 |
. . . . . 6
|
| 93 | 92 | recnd 10068 |
. . . . 5
|
| 94 | 48, 82, 93 | syl2anc 693 |
. . . 4
|
| 95 | 78, 69, 72 | divcld 10801 |
. . . 4
|
| 96 | 94, 95, 69 | mulassd 10063 |
. . 3
|
| 97 | 78, 69, 72 | divcan1d 10802 |
. . . 4
|
| 98 | 97 | oveq2d 6666 |
. . 3
|
| 99 | 91, 96, 98 | 3eqtrd 2660 |
. 2
|
| 100 | 42, 99 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-cj 13839 df-re 13840 df-im 13841 |
| This theorem is referenced by: cevathlem2 41057 |
| Copyright terms: Public domain | W3C validator |