Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sharhght Structured version   Visualization version   Unicode version

Theorem sharhght 41054
Description: Let  A B C be a triangle, and let  D lie on the line  A B. Then (doubled) areas of triangles  A D C and  C D B relate as lengths of corresponding bases  A D and  D B. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
sharhght.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
sharhght.b  |-  ( ph  ->  ( D  e.  CC  /\  ( ( A  -  D ) G ( B  -  D ) )  =  0 ) )
Assertion
Ref Expression
sharhght  |-  ( ph  ->  ( ( ( C  -  A ) G ( D  -  A
) )  x.  ( B  -  D )
)  =  ( ( ( C  -  B
) G ( D  -  B ) )  x.  ( A  -  D ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem sharhght
StepHypRef Expression
1 sharhght.a . . . . . . . . 9  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
21simp3d 1075 . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
31simp1d 1073 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
42, 3subcld 10392 . . . . . . 7  |-  ( ph  ->  ( C  -  A
)  e.  CC )
54adantr 481 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  ( C  -  A )  e.  CC )
6 sharhght.b . . . . . . . . 9  |-  ( ph  ->  ( D  e.  CC  /\  ( ( A  -  D ) G ( B  -  D ) )  =  0 ) )
76simpld 475 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
87, 3subcld 10392 . . . . . . 7  |-  ( ph  ->  ( D  -  A
)  e.  CC )
98adantr 481 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  ( D  -  A )  e.  CC )
10 sharhght.sigar . . . . . . 7  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
1110sigarim 41040 . . . . . 6  |-  ( ( ( C  -  A
)  e.  CC  /\  ( D  -  A
)  e.  CC )  ->  ( ( C  -  A ) G ( D  -  A
) )  e.  RR )
125, 9, 11syl2anc 693 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  e.  RR )
1312recnd 10068 . . . 4  |-  ( (
ph  /\  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  e.  CC )
1413mul01d 10235 . . 3  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  0 )  =  0 )
151simp2d 1074 . . . . . 6  |-  ( ph  ->  B  e.  CC )
1615adantr 481 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  B  e.  CC )
17 simpr 477 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  B  =  D )
1816, 17subeq0bd 10456 . . . 4  |-  ( (
ph  /\  B  =  D )  ->  ( B  -  D )  =  0 )
1918oveq2d 6666 . . 3  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  ( B  -  D ) )  =  ( ( ( C  -  A ) G ( D  -  A ) )  x.  0 ) )
202, 15subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( C  -  B
)  e.  CC )
2120adantr 481 . . . . . . 7  |-  ( (
ph  /\  B  =  D )  ->  ( C  -  B )  e.  CC )
227, 15subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( D  -  B
)  e.  CC )
2322adantr 481 . . . . . . 7  |-  ( (
ph  /\  B  =  D )  ->  ( D  -  B )  e.  CC )
2410sigarval 41039 . . . . . . 7  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  B
)  e.  CC )  ->  ( ( C  -  B ) G ( D  -  B
) )  =  ( Im `  ( ( * `  ( C  -  B ) )  x.  ( D  -  B ) ) ) )
2521, 23, 24syl2anc 693 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  (
( C  -  B
) G ( D  -  B ) )  =  ( Im `  ( ( * `  ( C  -  B
) )  x.  ( D  -  B )
) ) )
267adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  B  =  D )  ->  D  e.  CC )
2717eqcomd 2628 . . . . . . . . . 10  |-  ( (
ph  /\  B  =  D )  ->  D  =  B )
2826, 27subeq0bd 10456 . . . . . . . . 9  |-  ( (
ph  /\  B  =  D )  ->  ( D  -  B )  =  0 )
2928oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  B  =  D )  ->  (
( * `  ( C  -  B )
)  x.  ( D  -  B ) )  =  ( ( * `
 ( C  -  B ) )  x.  0 ) )
3021cjcld 13936 . . . . . . . . 9  |-  ( (
ph  /\  B  =  D )  ->  (
* `  ( C  -  B ) )  e.  CC )
3130mul01d 10235 . . . . . . . 8  |-  ( (
ph  /\  B  =  D )  ->  (
( * `  ( C  -  B )
)  x.  0 )  =  0 )
3229, 31eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  B  =  D )  ->  (
( * `  ( C  -  B )
)  x.  ( D  -  B ) )  =  0 )
3332fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  (
Im `  ( (
* `  ( C  -  B ) )  x.  ( D  -  B
) ) )  =  ( Im `  0
) )
34 0red 10041 . . . . . . 7  |-  ( (
ph  /\  B  =  D )  ->  0  e.  RR )
3534reim0d 13965 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  (
Im `  0 )  =  0 )
3625, 33, 353eqtrd 2660 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  (
( C  -  B
) G ( D  -  B ) )  =  0 )
3736oveq1d 6665 . . . 4  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D ) )  =  ( 0  x.  ( A  -  D
) ) )
383adantr 481 . . . . . 6  |-  ( (
ph  /\  B  =  D )  ->  A  e.  CC )
3938, 26subcld 10392 . . . . 5  |-  ( (
ph  /\  B  =  D )  ->  ( A  -  D )  e.  CC )
4039mul02d 10234 . . . 4  |-  ( (
ph  /\  B  =  D )  ->  (
0  x.  ( A  -  D ) )  =  0 )
4137, 40eqtrd 2656 . . 3  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D ) )  =  0 )
4214, 19, 413eqtr4d 2666 . 2  |-  ( (
ph  /\  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  ( B  -  D ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D
) ) )
432adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  C  e.  CC )
4415adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  B  e.  CC )
453adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  A  e.  CC )
4643, 44, 45npncand 10416 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
)  +  ( B  -  A ) )  =  ( C  -  A ) )
4746oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B )  +  ( B  -  A ) ) G ( D  -  A ) )  =  ( ( C  -  A ) G ( D  -  A
) ) )
4843, 44subcld 10392 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( C  -  B )  e.  CC )
498adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  -  A )  e.  CC )
5044, 45subcld 10392 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( B  -  A )  e.  CC )
5110sigaraf 41042 . . . . . . . 8  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  A
)  e.  CC  /\  ( B  -  A
)  e.  CC )  ->  ( ( ( C  -  B )  +  ( B  -  A ) ) G ( D  -  A
) )  =  ( ( ( C  -  B ) G ( D  -  A ) )  +  ( ( B  -  A ) G ( D  -  A ) ) ) )
5248, 49, 50, 51syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B )  +  ( B  -  A ) ) G ( D  -  A ) )  =  ( ( ( C  -  B ) G ( D  -  A ) )  +  ( ( B  -  A ) G ( D  -  A ) ) ) )
5347, 52eqtr3d 2658 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  =  ( ( ( C  -  B ) G ( D  -  A ) )  +  ( ( B  -  A ) G ( D  -  A ) ) ) )
546simprd 479 . . . . . . . . 9  |-  ( ph  ->  ( ( A  -  D ) G ( B  -  D ) )  =  0 )
5554adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( A  -  D
) G ( B  -  D ) )  =  0 )
567adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  D  e.  CC )
5710sigarperm 41049 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
( A  -  D
) G ( B  -  D ) )  =  ( ( B  -  A ) G ( D  -  A
) ) )
5845, 44, 56, 57syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( A  -  D
) G ( B  -  D ) )  =  ( ( B  -  A ) G ( D  -  A
) ) )
5955, 58eqtr3d 2658 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  0  =  ( ( B  -  A ) G ( D  -  A
) ) )
6059oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  A ) )  +  0 )  =  ( ( ( C  -  B ) G ( D  -  A ) )  +  ( ( B  -  A ) G ( D  -  A ) ) ) )
6110sigarim 41040 . . . . . . . . 9  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  A
)  e.  CC )  ->  ( ( C  -  B ) G ( D  -  A
) )  e.  RR )
6248, 49, 61syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( D  -  A ) )  e.  RR )
6362recnd 10068 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( D  -  A ) )  e.  CC )
6463addid1d 10236 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  A ) )  +  0 )  =  ( ( C  -  B ) G ( D  -  A
) ) )
6553, 60, 643eqtr2d 2662 . . . . 5  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  =  ( ( C  -  B ) G ( D  -  A
) ) )
6644, 56negsubdi2d 10408 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  B  =  D )  ->  -u ( B  -  D )  =  ( D  -  B ) )
6766eqcomd 2628 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  -  B )  =  -u ( B  -  D ) )
6867oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( D  -  B
)  /  ( B  -  D ) )  =  ( -u ( B  -  D )  /  ( B  -  D ) ) )
6944, 56subcld 10392 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  B  =  D )  ->  ( B  -  D )  e.  CC )
70 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  B  =  D )  ->  -.  B  =  D )
7170neqned 2801 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  B  =  D )  ->  B  =/=  D )
7244, 56, 71subne0d 10401 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  B  =  D )  ->  ( B  -  D )  =/=  0 )
7369, 69, 72divnegd 10814 . . . . . . . . . 10  |-  ( (
ph  /\  -.  B  =  D )  ->  -u (
( B  -  D
)  /  ( B  -  D ) )  =  ( -u ( B  -  D )  /  ( B  -  D ) ) )
7469, 72dividd 10799 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( B  -  D
)  /  ( B  -  D ) )  =  1 )
7574negeqd 10275 . . . . . . . . . 10  |-  ( (
ph  /\  -.  B  =  D )  ->  -u (
( B  -  D
)  /  ( B  -  D ) )  =  -u 1 )
7668, 73, 753eqtr2d 2662 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( D  -  B
)  /  ( B  -  D ) )  =  -u 1 )
7776oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( D  -  B )  /  ( B  -  D )
)  x.  ( A  -  D ) )  =  ( -u 1  x.  ( A  -  D
) ) )
7845, 56subcld 10392 . . . . . . . . 9  |-  ( (
ph  /\  -.  B  =  D )  ->  ( A  -  D )  e.  CC )
7978mulm1d 10482 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( -u 1  x.  ( A  -  D ) )  =  -u ( A  -  D ) )
8045, 56negsubdi2d 10408 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  -u ( A  -  D )  =  ( D  -  A ) )
8177, 79, 803eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( D  -  B )  /  ( B  -  D )
)  x.  ( A  -  D ) )  =  ( D  -  A ) )
8256, 44subcld 10392 . . . . . . . 8  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  -  B )  e.  CC )
8382, 69, 78, 72div32d 10824 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( D  -  B )  /  ( B  -  D )
)  x.  ( A  -  D ) )  =  ( ( D  -  B )  x.  ( ( A  -  D )  /  ( B  -  D )
) ) )
8481, 83eqtr3d 2658 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  -  A )  =  ( ( D  -  B )  x.  ( ( A  -  D )  /  ( B  -  D )
) ) )
8584oveq2d 6666 . . . . 5  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( D  -  A ) )  =  ( ( C  -  B ) G ( ( D  -  B )  x.  (
( A  -  D
)  /  ( B  -  D ) ) ) ) )
8656, 45, 443jca 1242 . . . . . . 7  |-  ( (
ph  /\  -.  B  =  D )  ->  ( D  e.  CC  /\  A  e.  CC  /\  B  e.  CC ) )
8710, 86, 70, 55sigardiv 41050 . . . . . 6  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( A  -  D
)  /  ( B  -  D ) )  e.  RR )
8810sigarls 41046 . . . . . 6  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  B
)  e.  CC  /\  ( ( A  -  D )  /  ( B  -  D )
)  e.  RR )  ->  ( ( C  -  B ) G ( ( D  -  B )  x.  (
( A  -  D
)  /  ( B  -  D ) ) ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( ( A  -  D )  /  ( B  -  D ) ) ) )
8948, 82, 87, 88syl3anc 1326 . . . . 5  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( ( D  -  B )  x.  ( ( A  -  D )  / 
( B  -  D
) ) ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( ( A  -  D )  /  ( B  -  D )
) ) )
9065, 85, 893eqtrd 2660 . . . 4  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  A
) G ( D  -  A ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( ( A  -  D )  /  ( B  -  D )
) ) )
9190oveq1d 6665 . . 3  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  ( B  -  D ) )  =  ( ( ( ( C  -  B
) G ( D  -  B ) )  x.  ( ( A  -  D )  / 
( B  -  D
) ) )  x.  ( B  -  D
) ) )
9210sigarim 41040 . . . . . 6  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  B
)  e.  CC )  ->  ( ( C  -  B ) G ( D  -  B
) )  e.  RR )
9392recnd 10068 . . . . 5  |-  ( ( ( C  -  B
)  e.  CC  /\  ( D  -  B
)  e.  CC )  ->  ( ( C  -  B ) G ( D  -  B
) )  e.  CC )
9448, 82, 93syl2anc 693 . . . 4  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( C  -  B
) G ( D  -  B ) )  e.  CC )
9578, 69, 72divcld 10801 . . . 4  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( A  -  D
)  /  ( B  -  D ) )  e.  CC )
9694, 95, 69mulassd 10063 . . 3  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( ( C  -  B ) G ( D  -  B
) )  x.  (
( A  -  D
)  /  ( B  -  D ) ) )  x.  ( B  -  D ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( ( ( A  -  D )  / 
( B  -  D
) )  x.  ( B  -  D )
) ) )
9778, 69, 72divcan1d 10802 . . . 4  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( A  -  D )  /  ( B  -  D )
)  x.  ( B  -  D ) )  =  ( A  -  D ) )
9897oveq2d 6666 . . 3  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  B ) G ( D  -  B ) )  x.  ( ( ( A  -  D
)  /  ( B  -  D ) )  x.  ( B  -  D ) ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D
) ) )
9991, 96, 983eqtrd 2660 . 2  |-  ( (
ph  /\  -.  B  =  D )  ->  (
( ( C  -  A ) G ( D  -  A ) )  x.  ( B  -  D ) )  =  ( ( ( C  -  B ) G ( D  -  B ) )  x.  ( A  -  D
) ) )
10042, 99pm2.61dan 832 1  |-  ( ph  ->  ( ( ( C  -  A ) G ( D  -  A
) )  x.  ( B  -  D )
)  =  ( ( ( C  -  B
) G ( D  -  B ) )  x.  ( A  -  D ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   *ccj 13836   Imcim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cevathlem2  41057
  Copyright terms: Public domain W3C validator