Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarperm Structured version   Visualization version   Unicode version

Theorem sigarperm 41049
Description: Signed area  ( A  -  C ) G ( B  -  C
) acts as a double area of a triangle  A B C. Here we prove that cyclically permuting the vertices doesn't change the area. (Contributed by Saveliy Skresanov, 20-Sep-2017.)
Hypothesis
Ref Expression
sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
Assertion
Ref Expression
sigarperm  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( B  -  A ) G ( C  -  A
) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y
Allowed substitution hints:    G( x, y)

Proof of Theorem sigarperm
StepHypRef Expression
1 simp2 1062 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
2 simp3 1063 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
3 sigar . . . . . . . 8  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
43sigarim 41040 . . . . . . 7  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B G C )  e.  RR )
54recnd 10068 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B G C )  e.  CC )
61, 2, 5syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B G C )  e.  CC )
7 simp1 1061 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
83sigarim 41040 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B G A )  e.  RR )
98recnd 10068 . . . . . 6  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B G A )  e.  CC )
101, 7, 9syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B G A )  e.  CC )
116, 10negsubd 10398 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B G C )  +  -u ( B G A ) )  =  ( ( B G C )  -  ( B G A ) ) )
123sigarac 41041 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A G B )  =  -u ( B G A ) )
137, 1, 12syl2anc 693 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A G B )  = 
-u ( B G A ) )
1413eqcomd 2628 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  -u ( B G A )  =  ( A G B ) )
1514oveq2d 6666 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B G C )  +  -u ( B G A ) )  =  ( ( B G C )  +  ( A G B ) ) )
1611, 15eqtr3d 2658 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B G C )  -  ( B G A ) )  =  ( ( B G C )  +  ( A G B ) ) )
1716oveq1d 6665 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( B G C )  -  ( B G A ) )  -  ( A G C ) )  =  ( ( ( B G C )  +  ( A G B ) )  -  ( A G C ) ) )
183sigarexp 41048 . . 3  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
( B  -  A
) G ( C  -  A ) )  =  ( ( ( B G C )  -  ( B G A ) )  -  ( A G C ) ) )
19183comr 1273 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  A
) G ( C  -  A ) )  =  ( ( ( B G C )  -  ( B G A ) )  -  ( A G C ) ) )
203sigarexp 41048 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( ( A G B )  -  ( A G C ) )  -  ( C G B ) ) )
213sigarim 41040 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A G B )  e.  RR )
227, 1, 21syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A G B )  e.  RR )
2322recnd 10068 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A G B )  e.  CC )
243sigarim 41040 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A G C )  e.  RR )
257, 2, 24syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A G C )  e.  RR )
2625recnd 10068 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A G C )  e.  CC )
273sigarim 41040 . . . . . 6  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C G B )  e.  RR )
282, 1, 27syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G B )  e.  RR )
2928recnd 10068 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G B )  e.  CC )
3023, 26, 29sub32d 10424 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A G B )  -  ( A G C ) )  -  ( C G B ) )  =  ( ( ( A G B )  -  ( C G B ) )  -  ( A G C ) ) )
316, 23addcomd 10238 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B G C )  +  ( A G B ) )  =  ( ( A G B )  +  ( B G C ) ) )
323sigarac 41041 . . . . . . . 8  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B G C )  =  -u ( C G B ) )
331, 2, 32syl2anc 693 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B G C )  = 
-u ( C G B ) )
3433eqcomd 2628 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  -u ( C G B )  =  ( B G C ) )
3534oveq2d 6666 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A G B )  +  -u ( C G B ) )  =  ( ( A G B )  +  ( B G C ) ) )
3623, 29negsubd 10398 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A G B )  +  -u ( C G B ) )  =  ( ( A G B )  -  ( C G B ) ) )
3731, 35, 363eqtr2rd 2663 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A G B )  -  ( C G B ) )  =  ( ( B G C )  +  ( A G B ) ) )
3837oveq1d 6665 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A G B )  -  ( C G B ) )  -  ( A G C ) )  =  ( ( ( B G C )  +  ( A G B ) )  -  ( A G C ) ) )
3920, 30, 383eqtrd 2660 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( ( B G C )  +  ( A G B ) )  -  ( A G C ) ) )
4017, 19, 393eqtr4rd 2667 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( B  -  A ) G ( C  -  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   RRcr 9935    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   *ccj 13836   Imcim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  sigarcol  41053  sharhght  41054  sigaradd  41055  cevathlem2  41057
  Copyright terms: Public domain W3C validator