| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihglblem6 | Structured version Visualization version Unicode version | ||
| Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
| Ref | Expression |
|---|---|
| dihglblem6.b |
|
| dihglblem6.l |
|
| dihglblem6.m |
|
| dihglblem6.a |
|
| dihglblem6.g |
|
| dihglblem6.h |
|
| dihglblem6.i |
|
| dihglblem6.u |
|
| dihglblem6.s |
|
| dihglblem6.d |
|
| Ref | Expression |
|---|---|
| dihglblem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihglblem6.b |
. . . 4
| |
| 2 | dihglblem6.l |
. . . 4
| |
| 3 | eqid 2622 |
. . . 4
| |
| 4 | dihglblem6.g |
. . . 4
| |
| 5 | dihglblem6.h |
. . . 4
| |
| 6 | eqid 2622 |
. . . 4
| |
| 7 | eqid 2622 |
. . . 4
| |
| 8 | dihglblem6.i |
. . . 4
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | dihglblem4 36586 |
. . 3
|
| 10 | fal 1490 |
. . . . 5
| |
| 11 | dihglblem6.s |
. . . . . . . 8
| |
| 12 | dihglblem6.d |
. . . . . . . 8
| |
| 13 | dihglblem6.u |
. . . . . . . . 9
| |
| 14 | simpll 790 |
. . . . . . . . 9
| |
| 15 | 5, 13, 14 | dvhlmod 36399 |
. . . . . . . 8
|
| 16 | simplll 798 |
. . . . . . . . . . 11
| |
| 17 | hlclat 34645 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . 10
|
| 19 | simplrl 800 |
. . . . . . . . . 10
| |
| 20 | 1, 4 | clatglbcl 17114 |
. . . . . . . . . 10
|
| 21 | 18, 19, 20 | syl2anc 693 |
. . . . . . . . 9
|
| 22 | 1, 5, 8, 13, 11 | dihlss 36539 |
. . . . . . . . 9
|
| 23 | 14, 21, 22 | syl2anc 693 |
. . . . . . . 8
|
| 24 | 1, 4, 5, 13, 8, 11 | dihglblem5 36587 |
. . . . . . . . 9
|
| 25 | 24 | adantr 481 |
. . . . . . . 8
|
| 26 | simpr 477 |
. . . . . . . 8
| |
| 27 | 11, 12, 15, 23, 25, 26 | lpssat 34300 |
. . . . . . 7
|
| 28 | 27 | ex 450 |
. . . . . 6
|
| 29 | simp1l 1085 |
. . . . . . . . . 10
| |
| 30 | 5, 13, 8, 12 | dih1dimat 36619 |
. . . . . . . . . . . 12
|
| 31 | 30 | adantlr 751 |
. . . . . . . . . . 11
|
| 32 | 31 | 3adant3 1081 |
. . . . . . . . . 10
|
| 33 | 5, 8 | dihcnvid2 36562 |
. . . . . . . . . 10
|
| 34 | 29, 32, 33 | syl2anc 693 |
. . . . . . . . 9
|
| 35 | simp3l 1089 |
. . . . . . . . . . . . 13
| |
| 36 | ssiin 4570 |
. . . . . . . . . . . . 13
| |
| 37 | 35, 36 | sylib 208 |
. . . . . . . . . . . 12
|
| 38 | simplll 798 |
. . . . . . . . . . . . . . . 16
| |
| 39 | simpll 790 |
. . . . . . . . . . . . . . . . . . 19
| |
| 40 | 1, 5, 8, 13, 11 | dihf11 36556 |
. . . . . . . . . . . . . . . . . . 19
|
| 41 | f1f1orn 6148 |
. . . . . . . . . . . . . . . . . . 19
| |
| 42 | 39, 40, 41 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
|
| 43 | f1ocnvdm 6540 |
. . . . . . . . . . . . . . . . . 18
| |
| 44 | 42, 31, 43 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
|
| 45 | 44 | adantr 481 |
. . . . . . . . . . . . . . . 16
|
| 46 | simplrl 800 |
. . . . . . . . . . . . . . . . 17
| |
| 47 | 46 | sselda 3603 |
. . . . . . . . . . . . . . . 16
|
| 48 | 1, 2, 5, 8 | dihord 36553 |
. . . . . . . . . . . . . . . 16
|
| 49 | 38, 45, 47, 48 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
|
| 50 | 39, 31, 33 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
|
| 51 | 50 | adantr 481 |
. . . . . . . . . . . . . . . 16
|
| 52 | 51 | sseq1d 3632 |
. . . . . . . . . . . . . . 15
|
| 53 | 49, 52 | bitr3d 270 |
. . . . . . . . . . . . . 14
|
| 54 | 53 | ralbidva 2985 |
. . . . . . . . . . . . 13
|
| 55 | 54 | 3adant3 1081 |
. . . . . . . . . . . 12
|
| 56 | 37, 55 | mpbird 247 |
. . . . . . . . . . 11
|
| 57 | simp1ll 1124 |
. . . . . . . . . . . . 13
| |
| 58 | 57, 17 | syl 17 |
. . . . . . . . . . . 12
|
| 59 | 44 | 3adant3 1081 |
. . . . . . . . . . . 12
|
| 60 | simp1rl 1126 |
. . . . . . . . . . . 12
| |
| 61 | 1, 2, 4 | clatleglb 17126 |
. . . . . . . . . . . 12
|
| 62 | 58, 59, 60, 61 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 63 | 56, 62 | mpbird 247 |
. . . . . . . . . 10
|
| 64 | 58, 60, 20 | syl2anc 693 |
. . . . . . . . . . 11
|
| 65 | 1, 2, 5, 8 | dihord 36553 |
. . . . . . . . . . 11
|
| 66 | 29, 59, 64, 65 | syl3anc 1326 |
. . . . . . . . . 10
|
| 67 | 63, 66 | mpbird 247 |
. . . . . . . . 9
|
| 68 | 34, 67 | eqsstr3d 3640 |
. . . . . . . 8
|
| 69 | simp3r 1090 |
. . . . . . . 8
| |
| 70 | 68, 69 | pm2.21fal 1505 |
. . . . . . 7
|
| 71 | 70 | rexlimdv3a 3033 |
. . . . . 6
|
| 72 | 28, 71 | syld 47 |
. . . . 5
|
| 73 | 10, 72 | mtoi 190 |
. . . 4
|
| 74 | dfpss3 3693 |
. . . . . 6
| |
| 75 | 74 | notbii 310 |
. . . . 5
|
| 76 | iman 440 |
. . . . 5
| |
| 77 | anclb 570 |
. . . . 5
| |
| 78 | 75, 76, 77 | 3bitr2i 288 |
. . . 4
|
| 79 | 73, 78 | sylib 208 |
. . 3
|
| 80 | 9, 79 | mpd 15 |
. 2
|
| 81 | eqss 3618 |
. 2
| |
| 82 | 80, 81 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 df-edring 36045 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 |
| This theorem is referenced by: dihglb 36630 |
| Copyright terms: Public domain | W3C validator |