MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnfval Structured version   Visualization version   Unicode version

Theorem cpnfval 23695
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnfval  |-  ( S 
C_  CC  ->  ( C^n `  S )  =  ( n  e. 
NN0  |->  { f  e.  ( CC  ^pm  S
)  |  ( ( S  Dn f ) `  n )  e.  ( dom  f -cn->
CC ) } ) )
Distinct variable group:    f, n, S

Proof of Theorem cpnfval
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 cnex 10017 . . 3  |-  CC  e.  _V
21elpw2 4828 . 2  |-  ( S  e.  ~P CC  <->  S  C_  CC )
3 oveq2 6658 . . . . 5  |-  ( s  =  S  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S
) )
4 oveq1 6657 . . . . . . 7  |-  ( s  =  S  ->  (
s  Dn f )  =  ( S  Dn f ) )
54fveq1d 6193 . . . . . 6  |-  ( s  =  S  ->  (
( s  Dn
f ) `  n
)  =  ( ( S  Dn f ) `  n ) )
65eleq1d 2686 . . . . 5  |-  ( s  =  S  ->  (
( ( s  Dn f ) `  n )  e.  ( dom  f -cn-> CC )  <-> 
( ( S  Dn f ) `  n )  e.  ( dom  f -cn-> CC ) ) )
73, 6rabeqbidv 3195 . . . 4  |-  ( s  =  S  ->  { f  e.  ( CC  ^pm  s )  |  ( ( s  Dn
f ) `  n
)  e.  ( dom  f -cn-> CC ) }  =  { f  e.  ( CC  ^pm  S )  |  ( ( S  Dn f ) `
 n )  e.  ( dom  f -cn-> CC ) } )
87mpteq2dv 4745 . . 3  |-  ( s  =  S  ->  (
n  e.  NN0  |->  { f  e.  ( CC  ^pm  s )  |  ( ( s  Dn
f ) `  n
)  e.  ( dom  f -cn-> CC ) } )  =  ( n  e. 
NN0  |->  { f  e.  ( CC  ^pm  S
)  |  ( ( S  Dn f ) `  n )  e.  ( dom  f -cn->
CC ) } ) )
9 df-cpn 23633 . . 3  |-  C^n  =  ( s  e. 
~P CC  |->  ( n  e.  NN0  |->  { f  e.  ( CC  ^pm  s )  |  ( ( s  Dn
f ) `  n
)  e.  ( dom  f -cn-> CC ) } ) )
10 nn0ex 11298 . . . 4  |-  NN0  e.  _V
1110mptex 6486 . . 3  |-  ( n  e.  NN0  |->  { f  e.  ( CC  ^pm  S )  |  ( ( S  Dn f ) `  n )  e.  ( dom  f -cn->
CC ) } )  e.  _V
128, 9, 11fvmpt 6282 . 2  |-  ( S  e.  ~P CC  ->  ( C^n `  S
)  =  ( n  e.  NN0  |->  { f  e.  ( CC  ^pm  S )  |  ( ( S  Dn f ) `  n )  e.  ( dom  f -cn->
CC ) } ) )
132, 12sylbir 225 1  |-  ( S 
C_  CC  ->  ( C^n `  S )  =  ( n  e. 
NN0  |->  { f  e.  ( CC  ^pm  S
)  |  ( ( S  Dn f ) `  n )  e.  ( dom  f -cn->
CC ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   NN0cn0 11292   -cn->ccncf 22679    Dncdvn 23628   C^nccpn 23629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-n0 11293  df-cpn 23633
This theorem is referenced by:  fncpn  23696  elcpn  23697
  Copyright terms: Public domain W3C validator