Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftmo Structured version   Visualization version   Unicode version

Theorem cvmliftmo 31266
Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
cvmliftmo.b  |-  B  = 
U. C
cvmliftmo.y  |-  Y  = 
U. K
cvmliftmo.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftmo.k  |-  ( ph  ->  K  e. Conn )
cvmliftmo.l  |-  ( ph  ->  K  e. 𝑛Locally Conn )
cvmliftmo.o  |-  ( ph  ->  O  e.  Y )
cvmliftmo.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmliftmo.p  |-  ( ph  ->  P  e.  B )
cvmliftmo.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
Assertion
Ref Expression
cvmliftmo  |-  ( ph  ->  E* f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
Distinct variable groups:    C, f    f, G    f, K    f, O    ph, f    f, F    P, f
Allowed substitution hints:    B( f)    J( f)    Y( f)

Proof of Theorem cvmliftmo
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 cvmliftmo.b . . . . 5  |-  B  = 
U. C
2 cvmliftmo.y . . . . 5  |-  Y  = 
U. K
3 cvmliftmo.f . . . . . 6  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
43ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  F  e.  ( C CovMap  J ) )
5 cvmliftmo.k . . . . . 6  |-  ( ph  ->  K  e. Conn )
65ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  K  e. Conn )
7 cvmliftmo.l . . . . . 6  |-  ( ph  ->  K  e. 𝑛Locally Conn )
87ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  K  e. 𝑛Locally Conn )
9 cvmliftmo.o . . . . . 6  |-  ( ph  ->  O  e.  Y )
109ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  O  e.  Y )
11 simplrl 800 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  f  e.  ( K  Cn  C
) )
12 simplrr 801 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  g  e.  ( K  Cn  C
) )
13 simprll 802 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  ( F  o.  f )  =  G )
14 simprrl 804 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  ( F  o.  g )  =  G )
1513, 14eqtr4d 2659 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  ( F  o.  f )  =  ( F  o.  g ) )
16 simprlr 803 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  (
f `  O )  =  P )
17 simprrr 805 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  (
g `  O )  =  P )
1816, 17eqtr4d 2659 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  (
f `  O )  =  ( g `  O ) )
191, 2, 4, 6, 8, 10, 11, 12, 15, 18cvmliftmoi 31265 . . . 4  |-  ( ( ( ph  /\  (
f  e.  ( K  Cn  C )  /\  g  e.  ( K  Cn  C ) ) )  /\  ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) ) )  ->  f  =  g )
2019ex 450 . . 3  |-  ( (
ph  /\  ( f  e.  ( K  Cn  C
)  /\  g  e.  ( K  Cn  C
) ) )  -> 
( ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) )  ->  f  =  g ) )
2120ralrimivva 2971 . 2  |-  ( ph  ->  A. f  e.  ( K  Cn  C ) A. g  e.  ( K  Cn  C ) ( ( ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P )  /\  (
( F  o.  g
)  =  G  /\  ( g `  O
)  =  P ) )  ->  f  =  g ) )
22 coeq2 5280 . . . . 5  |-  ( f  =  g  ->  ( F  o.  f )  =  ( F  o.  g ) )
2322eqeq1d 2624 . . . 4  |-  ( f  =  g  ->  (
( F  o.  f
)  =  G  <->  ( F  o.  g )  =  G ) )
24 fveq1 6190 . . . . 5  |-  ( f  =  g  ->  (
f `  O )  =  ( g `  O ) )
2524eqeq1d 2624 . . . 4  |-  ( f  =  g  ->  (
( f `  O
)  =  P  <->  ( g `  O )  =  P ) )
2623, 25anbi12d 747 . . 3  |-  ( f  =  g  ->  (
( ( F  o.  f )  =  G  /\  ( f `  O )  =  P )  <->  ( ( F  o.  g )  =  G  /\  ( g `
 O )  =  P ) ) )
2726rmo4 3399 . 2  |-  ( E* f  e.  ( K  Cn  C ) ( ( F  o.  f
)  =  G  /\  ( f `  O
)  =  P )  <->  A. f  e.  ( K  Cn  C ) A. g  e.  ( K  Cn  C ) ( ( ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P )  /\  ( ( F  o.  g )  =  G  /\  (
g `  O )  =  P ) )  -> 
f  =  g ) )
2821, 27sylibr 224 1  |-  ( ph  ->  E* f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E*wrmo 2915   U.cuni 4436    o. ccom 5118   ` cfv 5888  (class class class)co 6650    Cn ccn 21028  Conncconn 21214  𝑛Locally cnlly 21268   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-nei 20902  df-cn 21031  df-conn 21215  df-nlly 21270  df-hmeo 21558  df-cvm 31238
This theorem is referenced by:  cvmliftlem14  31279  cvmlift2lem13  31297  cvmlift3  31310
  Copyright terms: Public domain W3C validator