Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem13 Structured version   Visualization version   Unicode version

Theorem cvmlift2lem13 31297
Description: Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem13  |-  ( ph  ->  E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
Distinct variable groups:    f, g, x, y, z, F    ph, f,
g, x, y, z   
f, J, g, x, y, z    f, G, g, x, y, z   
f, H, x, y, z    C, f, g, x, y, z    P, f, g, x, y, z   
x, B, y, z   
f, K, g, x, y, z
Allowed substitution hints:    B( f, g)    H( g)

Proof of Theorem cvmlift2lem13
Dummy variables  b 
c  d  u  v  a  r  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . 4  |-  B  = 
U. C
2 cvmlift2.f . . . 4  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . . . 4  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . . . 4  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 cvmlift2.h . . . 4  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
7 cvmlift2.k . . . 4  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
8 fveq2 6191 . . . . . 6  |-  ( a  =  z  ->  (
( ( II  tX  II )  CnP  C ) `
 a )  =  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
98eleq2d 2687 . . . . 5  |-  ( a  =  z  ->  ( K  e.  ( (
( II  tX  II )  CnP  C ) `  a )  <->  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) ) )
109cbvrabv 3199 . . . 4  |-  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  =  {
z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  z ) }
11 sneq 4187 . . . . . . 7  |-  ( z  =  b  ->  { z }  =  { b } )
1211xpeq2d 5139 . . . . . 6  |-  ( z  =  b  ->  (
( 0 [,] 1
)  X.  { z } )  =  ( ( 0 [,] 1
)  X.  { b } ) )
1312sseq1d 3632 . . . . 5  |-  ( z  =  b  ->  (
( ( 0 [,] 1 )  X.  {
z } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( (
0 [,] 1 )  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
1413cbvrabv 3199 . . . 4  |-  { z  e.  ( 0 [,] 1 )  |  ( ( 0 [,] 1
)  X.  { z } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } }  =  { b  e.  ( 0 [,] 1 )  |  ( ( 0 [,] 1 )  X. 
{ b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } }
15 simpr 477 . . . . . . 7  |-  ( ( c  =  r  /\  d  =  t )  ->  d  =  t )
1615eleq1d 2686 . . . . . 6  |-  ( ( c  =  r  /\  d  =  t )  ->  ( d  e.  ( 0 [,] 1 )  <-> 
t  e.  ( 0 [,] 1 ) ) )
17 xpeq1 5128 . . . . . . . . . 10  |-  ( v  =  u  ->  (
v  X.  { b } )  =  ( u  X.  { b } ) )
1817sseq1d 3632 . . . . . . . . 9  |-  ( v  =  u  ->  (
( v  X.  {
b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( u  X.  { b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
19 xpeq1 5128 . . . . . . . . . 10  |-  ( v  =  u  ->  (
v  X.  { d } )  =  ( u  X.  { d } ) )
2019sseq1d 3632 . . . . . . . . 9  |-  ( v  =  u  ->  (
( v  X.  {
d } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
2118, 20bibi12d 335 . . . . . . . 8  |-  ( v  =  u  ->  (
( ( v  X. 
{ b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  ( (
u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
2221cbvrexv 3172 . . . . . . 7  |-  ( E. v  e.  ( ( nei `  II ) `
 { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { c } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
23 simpl 473 . . . . . . . . . 10  |-  ( ( c  =  r  /\  d  =  t )  ->  c  =  r )
2423sneqd 4189 . . . . . . . . 9  |-  ( ( c  =  r  /\  d  =  t )  ->  { c }  =  { r } )
2524fveq2d 6195 . . . . . . . 8  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( nei `  II ) `  { c } )  =  ( ( nei `  II ) `  { r } ) )
2615sneqd 4189 . . . . . . . . . . 11  |-  ( ( c  =  r  /\  d  =  t )  ->  { d }  =  { t } )
2726xpeq2d 5139 . . . . . . . . . 10  |-  ( ( c  =  r  /\  d  =  t )  ->  ( u  X.  {
d } )  =  ( u  X.  {
t } ) )
2827sseq1d 3632 . . . . . . . . 9  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
2928bibi2d 332 . . . . . . . 8  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  ( (
u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3025, 29rexeqbidv 3153 . . . . . . 7  |-  ( ( c  =  r  /\  d  =  t )  ->  ( E. u  e.  ( ( nei `  II ) `  { c } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3122, 30syl5bb 272 . . . . . 6  |-  ( ( c  =  r  /\  d  =  t )  ->  ( E. v  e.  ( ( nei `  II ) `  { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3216, 31anbi12d 747 . . . . 5  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( d  e.  ( 0 [,] 1
)  /\  E. v  e.  ( ( nei `  II ) `  { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )  <-> 
( t  e.  ( 0 [,] 1 )  /\  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) ) )
3332cbvopabv 4722 . . . 4  |-  { <. c ,  d >.  |  ( d  e.  ( 0 [,] 1 )  /\  E. v  e.  ( ( nei `  II ) `
 { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) }  =  { <. r ,  t >.  |  ( t  e.  ( 0 [,] 1 )  /\  E. u  e.  ( ( nei `  II ) `
 { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) }
341, 2, 3, 4, 5, 6, 7, 10, 14, 33cvmlift2lem12 31296 . . 3  |-  ( ph  ->  K  e.  ( ( II  tX  II )  Cn  C ) )
351, 2, 3, 4, 5, 6, 7cvmlift2lem7 31291 . . 3  |-  ( ph  ->  ( F  o.  K
)  =  G )
36 0elunit 12290 . . . . 5  |-  0  e.  ( 0 [,] 1
)
371, 2, 3, 4, 5, 6, 7cvmlift2lem8 31292 . . . . 5  |-  ( (
ph  /\  0  e.  ( 0 [,] 1
) )  ->  (
0 K 0 )  =  ( H ` 
0 ) )
3836, 37mpan2 707 . . . 4  |-  ( ph  ->  ( 0 K 0 )  =  ( H `
 0 ) )
391, 2, 3, 4, 5, 6cvmlift2lem2 31286 . . . . 5  |-  ( ph  ->  ( H  e.  ( II  Cn  C )  /\  ( F  o.  H )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( H `
 0 )  =  P ) )
4039simp3d 1075 . . . 4  |-  ( ph  ->  ( H `  0
)  =  P )
4138, 40eqtrd 2656 . . 3  |-  ( ph  ->  ( 0 K 0 )  =  P )
42 coeq2 5280 . . . . . 6  |-  ( g  =  K  ->  ( F  o.  g )  =  ( F  o.  K ) )
4342eqeq1d 2624 . . . . 5  |-  ( g  =  K  ->  (
( F  o.  g
)  =  G  <->  ( F  o.  K )  =  G ) )
44 oveq 6656 . . . . . 6  |-  ( g  =  K  ->  (
0 g 0 )  =  ( 0 K 0 ) )
4544eqeq1d 2624 . . . . 5  |-  ( g  =  K  ->  (
( 0 g 0 )  =  P  <->  ( 0 K 0 )  =  P ) )
4643, 45anbi12d 747 . . . 4  |-  ( g  =  K  ->  (
( ( F  o.  g )  =  G  /\  ( 0 g 0 )  =  P )  <->  ( ( F  o.  K )  =  G  /\  ( 0 K 0 )  =  P ) ) )
4746rspcev 3309 . . 3  |-  ( ( K  e.  ( ( II  tX  II )  Cn  C )  /\  (
( F  o.  K
)  =  G  /\  ( 0 K 0 )  =  P ) )  ->  E. g  e.  ( ( II  tX  II )  Cn  C
) ( ( F  o.  g )  =  G  /\  ( 0 g 0 )  =  P ) )
4834, 35, 41, 47syl12anc 1324 . 2  |-  ( ph  ->  E. g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
49 iitop 22683 . . . . 5  |-  II  e.  Top
50 iiuni 22684 . . . . 5  |-  ( 0 [,] 1 )  = 
U. II
5149, 49, 50, 50txunii 21396 . . . 4  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
52 iiconn 22690 . . . . . 6  |-  II  e. Conn
53 txconn 21492 . . . . . 6  |-  ( ( II  e. Conn  /\  II  e. Conn )  ->  ( II  tX  II )  e. Conn )
5452, 52, 53mp2an 708 . . . . 5  |-  ( II 
tX  II )  e. Conn
5554a1i 11 . . . 4  |-  ( ph  ->  ( II  tX  II )  e. Conn )
56 iinllyconn 31236 . . . . . 6  |-  II  e. 𝑛Locally Conn
57 txconn 21492 . . . . . . 7  |-  ( ( x  e. Conn  /\  y  e. Conn )  ->  ( x  tX  y )  e. Conn )
5857txnlly 21440 . . . . . 6  |-  ( ( II  e. 𝑛Locally Conn  /\  II  e. 𝑛Locally Conn )  -> 
( II  tX  II )  e. 𝑛Locally Conn )
5956, 56, 58mp2an 708 . . . . 5  |-  ( II 
tX  II )  e. 𝑛Locally Conn
6059a1i 11 . . . 4  |-  ( ph  ->  ( II  tX  II )  e. 𝑛Locally Conn )
61 opelxpi 5148 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
6236, 36, 61mp2an 708 . . . . 5  |-  <. 0 ,  0 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )
6362a1i 11 . . . 4  |-  ( ph  -> 
<. 0 ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
64 df-ov 6653 . . . . 5  |-  ( 0 G 0 )  =  ( G `  <. 0 ,  0 >. )
655, 64syl6eq 2672 . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( G `
 <. 0 ,  0
>. ) )
661, 51, 2, 55, 60, 63, 3, 4, 65cvmliftmo 31266 . . 3  |-  ( ph  ->  E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( g `  <. 0 ,  0 >. )  =  P ) )
67 df-ov 6653 . . . . . 6  |-  ( 0 g 0 )  =  ( g `  <. 0 ,  0 >. )
6867eqeq1i 2627 . . . . 5  |-  ( ( 0 g 0 )  =  P  <->  ( g `  <. 0 ,  0
>. )  =  P
)
6968anbi2i 730 . . . 4  |-  ( ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P )  <-> 
( ( F  o.  g )  =  G  /\  ( g `  <. 0 ,  0 >.
)  =  P ) )
7069rmobii 3133 . . 3  |-  ( E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  <->  E* g  e.  ( ( II  tX  II )  Cn  C
) ( ( F  o.  g )  =  G  /\  ( g `
 <. 0 ,  0
>. )  =  P
) )
7166, 70sylibr 224 . 2  |-  ( ph  ->  E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
72 reu5 3159 . 2  |-  ( E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  <->  ( E. g  e.  ( (
II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  /\  E* g  e.  (
( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) ) )
7348, 71, 72sylanbrc 698 1  |-  ( ph  ->  E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   E!wreu 2914   E*wrmo 2915   {crab 2916    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436   {copab 4712    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   [,]cicc 12178   neicnei 20901    Cn ccn 21028    CnP ccnp 21029  Conncconn 21214  𝑛Locally cnlly 21268    tX ctx 21363   IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-cmp 21190  df-conn 21215  df-lly 21269  df-nlly 21270  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pconn 31203  df-sconn 31204  df-cvm 31238
This theorem is referenced by:  cvmlift2  31298
  Copyright terms: Public domain W3C validator