Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph Structured version   Visualization version   Unicode version

Theorem eldioph 37321
Description: Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
eldioph  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N )  /\  P  e.  (mzPoly `  ( 1 ... K ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u    t, K, u    t, P, u

Proof of Theorem eldioph
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N )  /\  P  e.  (mzPoly `  ( 1 ... K ) ) )  ->  N  e.  NN0 )
2 simp2 1062 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N )  /\  P  e.  (mzPoly `  ( 1 ... K ) ) )  ->  K  e.  (
ZZ>= `  N ) )
3 simp3 1063 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N )  /\  P  e.  (mzPoly `  ( 1 ... K ) ) )  ->  P  e.  (mzPoly `  ( 1 ... K
) ) )
4 eqidd 2623 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N )  /\  P  e.  (mzPoly `  ( 1 ... K ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) } )
5 fveq1 6190 . . . . . . . . . 10  |-  ( p  =  P  ->  (
p `  u )  =  ( P `  u ) )
65eqeq1d 2624 . . . . . . . . 9  |-  ( p  =  P  ->  (
( p `  u
)  =  0  <->  ( P `  u )  =  0 ) )
76anbi2d 740 . . . . . . . 8  |-  ( p  =  P  ->  (
( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 )  <->  ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 ) ) )
87rexbidv 3052 . . . . . . 7  |-  ( p  =  P  ->  ( E. u  e.  ( NN0  ^m  ( 1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  <->  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) ) )
98abbidv 2741 . . . . . 6  |-  ( p  =  P  ->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) } )
109eqeq2d 2632 . . . . 5  |-  ( p  =  P  ->  ( { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) } ) )
1110rspcev 3309 . . . 4  |-  ( ( P  e.  (mzPoly `  ( 1 ... K
) )  /\  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) } )  ->  E. p  e.  (mzPoly `  ( 1 ... K
) ) { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
123, 4, 11syl2anc 693 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N )  /\  P  e.  (mzPoly `  ( 1 ... K ) ) )  ->  E. p  e.  (mzPoly `  ( 1 ... K
) ) { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
13 oveq2 6658 . . . . . 6  |-  ( k  =  K  ->  (
1 ... k )  =  ( 1 ... K
) )
1413fveq2d 6195 . . . . 5  |-  ( k  =  K  ->  (mzPoly `  ( 1 ... k
) )  =  (mzPoly `  ( 1 ... K
) ) )
1513oveq2d 6666 . . . . . . . 8  |-  ( k  =  K  ->  ( NN0  ^m  ( 1 ... k ) )  =  ( NN0  ^m  (
1 ... K ) ) )
1615rexeqdv 3145 . . . . . . 7  |-  ( k  =  K  ->  ( E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  <->  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) ) )
1716abbidv 2741 . . . . . 6  |-  ( k  =  K  ->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
1817eqeq2d 2632 . . . . 5  |-  ( k  =  K  ->  ( { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
1914, 18rexeqbidv 3153 . . . 4  |-  ( k  =  K  ->  ( E. p  e.  (mzPoly `  ( 1 ... k
) ) { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  E. p  e.  (mzPoly `  ( 1 ... K ) ) { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
2019rspcev 3309 . . 3  |-  ( ( K  e.  ( ZZ>= `  N )  /\  E. p  e.  (mzPoly `  (
1 ... K ) ) { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )  ->  E. k  e.  ( ZZ>=
`  N ) E. p  e.  (mzPoly `  ( 1 ... k
) ) { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
212, 12, 20syl2anc 693 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N )  /\  P  e.  (mzPoly `  ( 1 ... K ) ) )  ->  E. k  e.  (
ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k
) ) { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
22 eldiophb 37320 . 2  |-  ( { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N )  <->  ( N  e.  NN0  /\  E. k  e.  ( ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k
) ) { t  |  E. u  e.  ( NN0  ^m  (
1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
231, 21, 22sylanbrc 698 1  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N )  /\  P  e.  (mzPoly `  ( 1 ... K ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... K ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    |` cres 5116   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-dioph 37319
This theorem is referenced by:  eldioph2  37325  eq0rabdioph  37340
  Copyright terms: Public domain W3C validator