Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2 Structured version   Visualization version   Unicode version

Theorem eldioph2 37325
Description: Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 37315. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
eldioph2  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )  /\  P  e.  (mzPoly `  S ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N
) )
Distinct variable groups:    t, P, u    t, S, u    t, N, u

Proof of Theorem eldioph2
Dummy variables  a 
b  c  e  g  h  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpcompact2 37315 . . 3  |-  ( P  e.  (mzPoly `  S
)  ->  E. a  e.  Fin  E. b  e.  (mzPoly `  a )
( a  C_  S  /\  P  =  (
e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  |`  a ) ) ) ) )
213ad2ant3 1084 . 2  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )  /\  P  e.  (mzPoly `  S ) )  ->  E. a  e.  Fin  E. b  e.  (mzPoly `  a ) ( a 
C_  S  /\  P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) ) ) )
3 fveq1 6190 . . . . . . . . . 10  |-  ( P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) )  -> 
( P `  u
)  =  ( ( e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  |`  a ) ) ) `
 u ) )
43eqeq1d 2624 . . . . . . . . 9  |-  ( P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) )  -> 
( ( P `  u )  =  0  <-> 
( ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) ) `  u )  =  0 ) )
54anbi2d 740 . . . . . . . 8  |-  ( P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) )  -> 
( ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 )  <->  ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) ) )
65rexbidv 3052 . . . . . . 7  |-  ( P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) )  -> 
( E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( P `  u )  =  0 )  <->  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) ) )
76abbidv 2741 . . . . . 6  |-  ( P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) } )
87ad2antll 765 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S )  /\  P  e.  (mzPoly `  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  (
a  C_  S  /\  P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) } )
9 simplll 798 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  N  e.  NN0 )
10 simplrl 800 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  a  e.  Fin )
11 fzfi 12771 . . . . . . . . . . . 12  |-  ( 1 ... N )  e. 
Fin
12 unfi 8227 . . . . . . . . . . . 12  |-  ( ( a  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( a  u.  (
1 ... N ) )  e.  Fin )
1310, 11, 12sylancl 694 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  ( a  u.  ( 1 ... N
) )  e.  Fin )
14 ssun2 3777 . . . . . . . . . . . 12  |-  ( 1 ... N )  C_  ( a  u.  (
1 ... N ) )
1514a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  ( 1 ... N )  C_  ( a  u.  (
1 ... N ) ) )
16 eldioph2lem1 37323 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( a  u.  (
1 ... N ) )  e.  Fin  /\  (
1 ... N )  C_  ( a  u.  (
1 ... N ) ) )  ->  E. c  e.  ( ZZ>= `  N ) E. d  e.  _V  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
179, 13, 15, 16syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  E. c  e.  ( ZZ>= `  N ) E. d  e.  _V  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
18 f1ococnv2 6163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  (
1 ... N ) )  ->  ( d  o.  `' d )  =  (  _I  |`  (
a  u.  ( 1 ... N ) ) ) )
1918ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
d  o.  `' d )  =  (  _I  |`  ( a  u.  (
1 ... N ) ) ) )
2019reseq1d 5395 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
( d  o.  `' d )  |`  a
)  =  ( (  _I  |`  ( a  u.  ( 1 ... N
) ) )  |`  a ) )
21 ssun1 3776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  a  C_  ( a  u.  (
1 ... N ) )
22 resabs1 5427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( a 
C_  ( a  u.  ( 1 ... N
) )  ->  (
(  _I  |`  (
a  u.  ( 1 ... N ) ) )  |`  a )  =  (  _I  |`  a
) )
2321, 22ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (  _I  |`  ( a  u.  ( 1 ... N
) ) )  |`  a )  =  (  _I  |`  a )
2420, 23syl6req 2673 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (  _I  |`  a )  =  ( ( d  o.  `' d )  |`  a ) )
25 resco 5639 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( d  o.  `' d )  |`  a )  =  ( d  o.  ( `' d  |`  a ) )
2624, 25syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (  _I  |`  a )  =  ( d  o.  ( `' d  |`  a ) ) )
2726adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  (  _I  |`  a )  =  ( d  o.  ( `' d  |`  a ) ) )
2827coeq2d 5284 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  (
e  o.  (  _I  |`  a ) )  =  ( e  o.  (
d  o.  ( `' d  |`  a )
) ) )
29 coires1 5653 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( e  o.  (  _I  |`  a
) )  =  ( e  |`  a )
30 coass 5654 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( e  o.  d )  o.  ( `' d  |`  a ) )  =  ( e  o.  (
d  o.  ( `' d  |`  a )
) )
3130eqcomi 2631 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( e  o.  ( d  o.  ( `' d  |`  a ) ) )  =  ( ( e  o.  d )  o.  ( `' d  |`  a ) )
3228, 29, 313eqtr3g 2679 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  (
e  |`  a )  =  ( ( e  o.  d )  o.  ( `' d  |`  a ) ) )
3332fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  (
b `  ( e  |`  a ) )  =  ( b `  (
( e  o.  d
)  o.  ( `' d  |`  a )
) ) )
34 ovexd 6680 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  (
1 ... c )  e. 
_V )
35 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  e  e.  ( ZZ  ^m  S
) )
36 f1of1 6136 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  (
1 ... N ) )  ->  d : ( 1 ... c )
-1-1-> ( a  u.  (
1 ... N ) ) )
3736ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  d : ( 1 ... c ) -1-1-> ( a  u.  ( 1 ... N ) ) )
38 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  a  C_  S )
39 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  ->  ( 1 ... N )  C_  S )
4039ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  ( 1 ... N )  C_  S )
4138, 40unssd 3789 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  ( a  u.  ( 1 ... N
) )  C_  S
)
4241ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
a  u.  ( 1 ... N ) ) 
C_  S )
43 f1ss 6106 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( d : ( 1 ... c ) -1-1-> ( a  u.  ( 1 ... N ) )  /\  ( a  u.  ( 1 ... N
) )  C_  S
)  ->  d :
( 1 ... c
) -1-1-> S )
4437, 42, 43syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  d : ( 1 ... c ) -1-1-> S )
45 f1f 6101 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( d : ( 1 ... c ) -1-1-> S  -> 
d : ( 1 ... c ) --> S )
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  d : ( 1 ... c ) --> S )
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  d : ( 1 ... c ) --> S )
48 mapco2g 37277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1 ... c
)  e.  _V  /\  e  e.  ( ZZ  ^m  S )  /\  d : ( 1 ... c ) --> S )  ->  ( e  o.  d )  e.  ( ZZ  ^m  ( 1 ... c ) ) )
4934, 35, 47, 48syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  (
e  o.  d )  e.  ( ZZ  ^m  ( 1 ... c
) ) )
50 coeq1 5279 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( h  =  ( e  o.  d )  ->  (
h  o.  ( `' d  |`  a )
)  =  ( ( e  o.  d )  o.  ( `' d  |`  a ) ) )
5150fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( h  =  ( e  o.  d )  ->  (
b `  ( h  o.  ( `' d  |`  a ) ) )  =  ( b `  ( ( e  o.  d )  o.  ( `' d  |`  a ) ) ) )
52 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( h  e.  ( ZZ  ^m  ( 1 ... c
) )  |->  ( b `
 ( h  o.  ( `' d  |`  a ) ) ) )  =  ( h  e.  ( ZZ  ^m  ( 1 ... c
) )  |->  ( b `
 ( h  o.  ( `' d  |`  a ) ) ) )
53 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b `
 ( ( e  o.  d )  o.  ( `' d  |`  a ) ) )  e.  _V
5451, 52, 53fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( e  o.  d )  e.  ( ZZ  ^m  ( 1 ... c
) )  ->  (
( h  e.  ( ZZ  ^m  ( 1 ... c ) ) 
|->  ( b `  (
h  o.  ( `' d  |`  a )
) ) ) `  ( e  o.  d
) )  =  ( b `  ( ( e  o.  d )  o.  ( `' d  |`  a ) ) ) )
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  (
( h  e.  ( ZZ  ^m  ( 1 ... c ) ) 
|->  ( b `  (
h  o.  ( `' d  |`  a )
) ) ) `  ( e  o.  d
) )  =  ( b `  ( ( e  o.  d )  o.  ( `' d  |`  a ) ) ) )
5633, 55eqtr4d 2659 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  /\  e  e.  ( ZZ  ^m  S
) )  ->  (
b `  ( e  |`  a ) )  =  ( ( h  e.  ( ZZ  ^m  (
1 ... c ) ) 
|->  ( b `  (
h  o.  ( `' d  |`  a )
) ) ) `  ( e  o.  d
) ) )
5756mpteq2dva 4744 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
e  e.  ( ZZ 
^m  S )  |->  ( b `  ( e  |`  a ) ) )  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( ( h  e.  ( ZZ  ^m  ( 1 ... c
) )  |->  ( b `
 ( h  o.  ( `' d  |`  a ) ) ) ) `  ( e  o.  d ) ) ) )
5857fveq1d 6193 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
( e  e.  ( ZZ  ^m  S ) 
|->  ( b `  (
e  |`  a ) ) ) `  u )  =  ( ( e  e.  ( ZZ  ^m  S )  |->  ( ( h  e.  ( ZZ 
^m  ( 1 ... c ) )  |->  ( b `  ( h  o.  ( `' d  |`  a ) ) ) ) `  ( e  o.  d ) ) ) `  u ) )
5958eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
( ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) ) `  u )  =  0  <-> 
( ( e  e.  ( ZZ  ^m  S
)  |->  ( ( h  e.  ( ZZ  ^m  ( 1 ... c
) )  |->  ( b `
 ( h  o.  ( `' d  |`  a ) ) ) ) `  ( e  o.  d ) ) ) `  u )  =  0 ) )
6059anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 )  <->  ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
( e  e.  ( ZZ  ^m  S ) 
|->  ( ( h  e.  ( ZZ  ^m  (
1 ... c ) ) 
|->  ( b `  (
h  o.  ( `' d  |`  a )
) ) ) `  ( e  o.  d
) ) ) `  u )  =  0 ) ) )
6160rexbidv 3052 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  ( E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
( e  e.  ( ZZ  ^m  S ) 
|->  ( b `  (
e  |`  a ) ) ) `  u )  =  0 )  <->  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( ( h  e.  ( ZZ 
^m  ( 1 ... c ) )  |->  ( b `  ( h  o.  ( `' d  |`  a ) ) ) ) `  ( e  o.  d ) ) ) `  u )  =  0 ) ) )
6261abbidv 2741 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  =  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
( e  e.  ( ZZ  ^m  S ) 
|->  ( ( h  e.  ( ZZ  ^m  (
1 ... c ) ) 
|->  ( b `  (
h  o.  ( `' d  |`  a )
) ) ) `  ( e  o.  d
) ) ) `  u )  =  0 ) } )
63 simplrl 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  ->  S  e.  _V )
6463ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  S  e.  _V )
65 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
d  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )
66 diophrw 37322 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  _V  /\  d : ( 1 ... c ) -1-1-> S  /\  ( d  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( ( h  e.  ( ZZ 
^m  ( 1 ... c ) )  |->  ( b `  ( h  o.  ( `' d  |`  a ) ) ) ) `  ( e  o.  d ) ) ) `  u )  =  0 ) }  =  { t  |  E. g  e.  ( NN0  ^m  ( 1 ... c ) ) ( t  =  ( g  |`  ( 1 ... N ) )  /\  ( ( h  e.  ( ZZ  ^m  ( 1 ... c
) )  |->  ( b `
 ( h  o.  ( `' d  |`  a ) ) ) ) `  g )  =  0 ) } )
6764, 44, 65, 66syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( ( h  e.  ( ZZ 
^m  ( 1 ... c ) )  |->  ( b `  ( h  o.  ( `' d  |`  a ) ) ) ) `  ( e  o.  d ) ) ) `  u )  =  0 ) }  =  { t  |  E. g  e.  ( NN0  ^m  ( 1 ... c ) ) ( t  =  ( g  |`  ( 1 ... N ) )  /\  ( ( h  e.  ( ZZ  ^m  ( 1 ... c
) )  |->  ( b `
 ( h  o.  ( `' d  |`  a ) ) ) ) `  g )  =  0 ) } )
6862, 67eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  =  { t  |  E. g  e.  ( NN0  ^m  ( 1 ... c
) ) ( t  =  ( g  |`  ( 1 ... N
) )  /\  (
( h  e.  ( ZZ  ^m  ( 1 ... c ) ) 
|->  ( b `  (
h  o.  ( `' d  |`  a )
) ) ) `  g )  =  0 ) } )
69 simp-5l 808 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  N  e.  NN0 )
70 simplrl 800 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  c  e.  ( ZZ>= `  N )
)
71 ovexd 6680 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
1 ... c )  e. 
_V )
72 simplrr 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  b  e.  (mzPoly `  a ) )
7372ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  b  e.  (mzPoly `  a )
)
74 f1ocnv 6149 . . . . . . . . . . . . . . . . . 18  |-  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  (
1 ... N ) )  ->  `' d : ( a  u.  (
1 ... N ) ) -1-1-onto-> ( 1 ... c ) )
75 f1of 6137 . . . . . . . . . . . . . . . . . 18  |-  ( `' d : ( a  u.  ( 1 ... N ) ) -1-1-onto-> ( 1 ... c )  ->  `' d : ( a  u.  ( 1 ... N ) ) --> ( 1 ... c
) )
7674, 75syl 17 . . . . . . . . . . . . . . . . 17  |-  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  (
1 ... N ) )  ->  `' d : ( a  u.  (
1 ... N ) ) --> ( 1 ... c
) )
77 fssres 6070 . . . . . . . . . . . . . . . . 17  |-  ( ( `' d : ( a  u.  ( 1 ... N ) ) --> ( 1 ... c
)  /\  a  C_  ( a  u.  (
1 ... N ) ) )  ->  ( `' d  |`  a ) : a --> ( 1 ... c ) )
7876, 21, 77sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  (
1 ... N ) )  ->  ( `' d  |`  a ) : a --> ( 1 ... c
) )
7978ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  ( `' d  |`  a ) : a --> ( 1 ... c ) )
80 mzprename 37312 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... c
)  e.  _V  /\  b  e.  (mzPoly `  a
)  /\  ( `' d  |`  a ) : a --> ( 1 ... c ) )  -> 
( h  e.  ( ZZ  ^m  ( 1 ... c ) ) 
|->  ( b `  (
h  o.  ( `' d  |`  a )
) ) )  e.  (mzPoly `  ( 1 ... c ) ) )
8171, 73, 79, 80syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  (
h  e.  ( ZZ 
^m  ( 1 ... c ) )  |->  ( b `  ( h  o.  ( `' d  |`  a ) ) ) )  e.  (mzPoly `  ( 1 ... c
) ) )
82 eldioph 37321 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  c  e.  ( ZZ>= `  N )  /\  (
h  e.  ( ZZ 
^m  ( 1 ... c ) )  |->  ( b `  ( h  o.  ( `' d  |`  a ) ) ) )  e.  (mzPoly `  ( 1 ... c
) ) )  ->  { t  |  E. g  e.  ( NN0  ^m  ( 1 ... c
) ) ( t  =  ( g  |`  ( 1 ... N
) )  /\  (
( h  e.  ( ZZ  ^m  ( 1 ... c ) ) 
|->  ( b `  (
h  o.  ( `' d  |`  a )
) ) ) `  g )  =  0 ) }  e.  (Dioph `  N ) )
8369, 70, 81, 82syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  { t  |  E. g  e.  ( NN0  ^m  (
1 ... c ) ) ( t  =  ( g  |`  ( 1 ... N ) )  /\  ( ( h  e.  ( ZZ  ^m  ( 1 ... c
) )  |->  ( b `
 ( h  o.  ( `' d  |`  a ) ) ) ) `  g )  =  0 ) }  e.  (Dioph `  N
) )
8468, 83eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  /\  (
c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  /\  ( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  e.  (Dioph `  N ) )
8584ex 450 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  (
1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  /\  ( c  e.  ( ZZ>= `  N )  /\  d  e.  _V ) )  ->  (
( d : ( 1 ... c ) -1-1-onto-> ( a  u.  ( 1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  e.  (Dioph `  N ) ) )
8685rexlimdvva 3038 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  ( E. c  e.  ( ZZ>= `  N ) E. d  e.  _V  ( d : ( 1 ... c
)
-1-1-onto-> ( a  u.  (
1 ... N ) )  /\  ( d  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  e.  (Dioph `  N ) ) )
8717, 86mpd 15 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  /\  a  C_  S
)  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  e.  (Dioph `  N ) )
8887exp31 630 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )
)  ->  ( (
a  e.  Fin  /\  b  e.  (mzPoly `  a
) )  ->  (
a  C_  S  ->  { t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  e.  (Dioph `  N ) ) ) )
89883adant3 1081 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )  /\  P  e.  (mzPoly `  S ) )  -> 
( ( a  e. 
Fin  /\  b  e.  (mzPoly `  a ) )  ->  ( a  C_  S  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  e.  (Dioph `  N ) ) ) )
9089imp31 448 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S )  /\  P  e.  (mzPoly `  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  a  C_  S )  ->  { t  |  E. u  e.  ( NN0  ^m  S
) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  e.  (Dioph `  N ) )
9190adantrr 753 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S )  /\  P  e.  (mzPoly `  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  (
a  C_  S  /\  P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( ( e  e.  ( ZZ  ^m  S )  |->  ( b `
 ( e  |`  a ) ) ) `
 u )  =  0 ) }  e.  (Dioph `  N ) )
928, 91eqeltrd 2701 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  ( S  e.  _V  /\  ( 1 ... N )  C_  S )  /\  P  e.  (mzPoly `  S )
)  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a )
) )  /\  (
a  C_  S  /\  P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N ) )
9392ex 450 . . 3  |-  ( ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )  /\  P  e.  (mzPoly `  S ) )  /\  ( a  e.  Fin  /\  b  e.  (mzPoly `  a ) ) )  ->  ( ( a 
C_  S  /\  P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N ) ) )
9493rexlimdvva 3038 . 2  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )  /\  P  e.  (mzPoly `  S ) )  -> 
( E. a  e. 
Fin  E. b  e.  (mzPoly `  a ) ( a 
C_  S  /\  P  =  ( e  e.  ( ZZ  ^m  S
)  |->  ( b `  ( e  |`  a
) ) ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N ) ) )
952, 94mpd 15 1  |-  ( ( N  e.  NN0  /\  ( S  e.  _V  /\  ( 1 ... N
)  C_  S )  /\  P  e.  (mzPoly `  S ) )  ->  { t  |  E. u  e.  ( NN0  ^m  S ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  ( P `  u )  =  0 ) }  e.  (Dioph `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  eldioph2b  37326  diophin  37336  diophun  37337
  Copyright terms: Public domain W3C validator