Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eq0rabdioph Structured version   Visualization version   Unicode version

Theorem eq0rabdioph 37340
Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eq0rabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  e.  (Dioph `  N ) )
Distinct variable group:    t, N
Allowed substitution hint:    A( t)

Proof of Theorem eq0rabdioph
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . . . 8  |-  F/ t  N  e.  NN0
2 nfmpt1 4747 . . . . . . . . 9  |-  F/_ t
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )
32nfel1 2779 . . . . . . . 8  |-  F/ t ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )
41, 3nfan 1828 . . . . . . 7  |-  F/ t ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )
5 zex 11386 . . . . . . . . . . . . . 14  |-  ZZ  e.  _V
6 nn0ssz 11398 . . . . . . . . . . . . . 14  |-  NN0  C_  ZZ
7 mapss 7900 . . . . . . . . . . . . . 14  |-  ( ( ZZ  e.  _V  /\  NN0  C_  ZZ )  ->  ( NN0  ^m  ( 1 ... N ) )  C_  ( ZZ  ^m  (
1 ... N ) ) )
85, 6, 7mp2an 708 . . . . . . . . . . . . 13  |-  ( NN0 
^m  ( 1 ... N ) )  C_  ( ZZ  ^m  (
1 ... N ) )
98sseli 3599 . . . . . . . . . . . 12  |-  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  ->  t  e.  ( ZZ  ^m  (
1 ... N ) ) )
109adantl 482 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
t  e.  ( ZZ 
^m  ( 1 ... N ) ) )
11 mzpf 37299 . . . . . . . . . . . . 13  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ )
12 mptfcl 37283 . . . . . . . . . . . . . 14  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ 
->  ( t  e.  ( ZZ  ^m  ( 1 ... N ) )  ->  A  e.  ZZ ) )
1312imp 445 . . . . . . . . . . . . 13  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) : ( ZZ  ^m  ( 1 ... N ) ) --> ZZ  /\  t  e.  ( ZZ  ^m  (
1 ... N ) ) )  ->  A  e.  ZZ )
1411, 9, 13syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  t  e.  ( NN0  ^m  (
1 ... N ) ) )  ->  A  e.  ZZ )
1514adantll 750 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  ->  A  e.  ZZ )
16 eqid 2622 . . . . . . . . . . . 12  |-  ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A )  =  ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )
1716fvmpt2 6291 . . . . . . . . . . 11  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  /\  A  e.  ZZ )  ->  ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  A )
1810, 15, 17syl2anc 693 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  A )
1918eqcomd 2628 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  ->  A  =  ( (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  t ) )
2019eqeq1d 2624 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( A  =  0  <-> 
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  0 ) )
2120ex 450 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  ->  ( A  =  0  <->  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 t )  =  0 ) ) )
224, 21ralrimi 2957 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  A. t  e.  ( NN0  ^m  ( 1 ... N ) ) ( A  =  0  <->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  0 ) )
23 rabbi 3120 . . . . . 6  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  =  0  <->  ( (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  t )  =  0 )  <->  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  A  =  0 }  =  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  0 } )
2422, 23sylib 208 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  =  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  0 } )
25 nfcv 2764 . . . . . 6  |-  F/_ t
( NN0  ^m  (
1 ... N ) )
26 nfcv 2764 . . . . . 6  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
27 nfv 1843 . . . . . 6  |-  F/ a ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  0
28 nffvmpt1 6199 . . . . . . 7  |-  F/_ t
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  a
)
2928nfeq1 2778 . . . . . 6  |-  F/ t ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  a
)  =  0
30 fveq2 6191 . . . . . . 7  |-  ( t  =  a  ->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  a ) )
3130eqeq1d 2624 . . . . . 6  |-  ( t  =  a  ->  (
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  t
)  =  0  <->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  a
)  =  0 ) )
3225, 26, 27, 29, 31cbvrab 3198 . . . . 5  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  t
)  =  0 }  =  { a  e.  ( NN0  ^m  (
1 ... N ) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 }
3324, 32syl6eq 2672 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  =  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  a
)  =  0 } )
34 df-rab 2921 . . . 4  |-  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  a
)  =  0 }  =  { a  |  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 ) }
3533, 34syl6eq 2672 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  =  { a  |  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 ) } )
36 elmapi 7879 . . . . . . . . . 10  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  b : ( 1 ... N ) --> NN0 )
37 ffn 6045 . . . . . . . . . 10  |-  ( b : ( 1 ... N ) --> NN0  ->  b  Fn  ( 1 ... N ) )
38 fnresdm 6000 . . . . . . . . . 10  |-  ( b  Fn  ( 1 ... N )  ->  (
b  |`  ( 1 ... N ) )  =  b )
3936, 37, 383syl 18 . . . . . . . . 9  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
b  |`  ( 1 ... N ) )  =  b )
4039eqeq2d 2632 . . . . . . . 8  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  b ) )
41 equcom 1945 . . . . . . . 8  |-  ( a  =  b  <->  b  =  a )
4240, 41syl6bb 276 . . . . . . 7  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  b  =  a ) )
4342anbi1d 741 . . . . . 6  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
( a  =  ( b  |`  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 b )  =  0 )  <->  ( b  =  a  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) ) )
4443rexbiia 3040 . . . . 5  |-  ( E. b  e.  ( NN0 
^m  ( 1 ... N ) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 )  <->  E. b  e.  ( NN0  ^m  ( 1 ... N ) ) ( b  =  a  /\  ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  b
)  =  0 ) )
45 fveq2 6191 . . . . . . 7  |-  ( b  =  a  ->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  a ) )
4645eqeq1d 2624 . . . . . 6  |-  ( b  =  a  ->  (
( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  b
)  =  0  <->  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  a
)  =  0 ) )
4746ceqsrexbv 3337 . . . . 5  |-  ( E. b  e.  ( NN0 
^m  ( 1 ... N ) ) ( b  =  a  /\  ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  b
)  =  0 )  <-> 
( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 ) )
4844, 47bitr2i 265 . . . 4  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  a
)  =  0 )  <->  E. b  e.  ( NN0  ^m  ( 1 ... N ) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) )
4948abbii 2739 . . 3  |-  { a  |  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 a )  =  0 ) }  =  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... N
) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) }
5035, 49syl6eq 2672 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  =  { a  |  E. b  e.  ( NN0  ^m  (
1 ... N ) ) ( a  =  ( b  |`  ( 1 ... N ) )  /\  ( ( t  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 b )  =  0 ) } )
51 simpl 473 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  NN0 )
52 nn0z 11400 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
53 uzid 11702 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
5452, 53syl 17 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  N )
)
5554adantr 481 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  ( ZZ>= `  N ) )
56 simpr 477 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )
57 eldioph 37321 . . 3  |-  ( ( N  e.  NN0  /\  N  e.  ( ZZ>= `  N )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... N
) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) }  e.  (Dioph `  N ) )
5851, 55, 56, 57syl3anc 1326 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... N
) ) ( a  =  ( b  |`  ( 1 ... N
) )  /\  (
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  b
)  =  0 ) }  e.  (Dioph `  N ) )
5950, 58eqeltrd 2701 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =  0 }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  eqrabdioph  37341  0dioph  37342  vdioph  37343  rmydioph  37581  expdioph  37590
  Copyright terms: Public domain W3C validator