MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2eleq Structured version   Visualization version   Unicode version

Theorem en2eleq 8831
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2eleq  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )

Proof of Theorem en2eleq
StepHypRef Expression
1 2onn 7720 . . . . . 6  |-  2o  e.  om
2 nnfi 8153 . . . . . 6  |-  ( 2o  e.  om  ->  2o  e.  Fin )
31, 2ax-mp 5 . . . . 5  |-  2o  e.  Fin
4 enfi 8176 . . . . 5  |-  ( P 
~~  2o  ->  ( P  e.  Fin  <->  2o  e.  Fin ) )
53, 4mpbiri 248 . . . 4  |-  ( P 
~~  2o  ->  P  e. 
Fin )
65adantl 482 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  e.  Fin )
7 simpl 473 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  e.  P )
8 1onn 7719 . . . . . . . . 9  |-  1o  e.  om
98a1i 11 . . . . . . . 8  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  1o  e.  om )
10 simpr 477 . . . . . . . . 9  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  2o )
11 df-2o 7561 . . . . . . . . 9  |-  2o  =  suc  1o
1210, 11syl6breq 4694 . . . . . . . 8  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  ~~  suc  1o )
13 dif1en 8193 . . . . . . . 8  |-  ( ( 1o  e.  om  /\  P  ~~  suc  1o  /\  X  e.  P )  ->  ( P  \  { X } )  ~~  1o )
149, 12, 7, 13syl3anc 1326 . . . . . . 7  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( P  \  { X } )  ~~  1o )
15 en1uniel 8028 . . . . . . 7  |-  ( ( P  \  { X } )  ~~  1o  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
1614, 15syl 17 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  e.  ( P  \  { X } ) )
17 eldifsn 4317 . . . . . 6  |-  ( U. ( P  \  { X } )  e.  ( P  \  { X } )  <->  ( U. ( P  \  { X } )  e.  P  /\  U. ( P  \  { X } )  =/= 
X ) )
1816, 17sylib 208 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  -> 
( U. ( P 
\  { X }
)  e.  P  /\  U. ( P  \  { X } )  =/=  X
) )
1918simpld 475 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  e.  P
)
20 prssi 4353 . . . 4  |-  ( ( X  e.  P  /\  U. ( P  \  { X } )  e.  P
)  ->  { X ,  U. ( P  \  { X } ) } 
C_  P )
217, 19, 20syl2anc 693 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  { X ,  U. ( P  \  { X }
) }  C_  P
)
2218simprd 479 . . . . . 6  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  U. ( P  \  { X } )  =/=  X
)
2322necomd 2849 . . . . 5  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  X  =/=  U. ( P 
\  { X }
) )
24 pr2nelem 8827 . . . . 5  |-  ( ( X  e.  P  /\  U. ( P  \  { X } )  e.  P  /\  X  =/=  U. ( P  \  { X }
) )  ->  { X ,  U. ( P  \  { X } ) } 
~~  2o )
257, 19, 23, 24syl3anc 1326 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  { X ,  U. ( P  \  { X }
) }  ~~  2o )
26 ensym 8005 . . . . 5  |-  ( P 
~~  2o  ->  2o  ~~  P )
2726adantl 482 . . . 4  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  2o  ~~  P )
28 entr 8008 . . . 4  |-  ( ( { X ,  U. ( P  \  { X } ) }  ~~  2o  /\  2o  ~~  P
)  ->  { X ,  U. ( P  \  { X } ) } 
~~  P )
2925, 27, 28syl2anc 693 . . 3  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  { X ,  U. ( P  \  { X }
) }  ~~  P
)
30 fisseneq 8171 . . 3  |-  ( ( P  e.  Fin  /\  { X ,  U. ( P  \  { X }
) }  C_  P  /\  { X ,  U. ( P  \  { X } ) }  ~~  P )  ->  { X ,  U. ( P  \  { X } ) }  =  P )
316, 21, 29, 30syl3anc 1326 . 2  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  { X ,  U. ( P  \  { X }
) }  =  P )
3231eqcomd 2628 1  |-  ( ( X  e.  P  /\  P  ~~  2o )  ->  P  =  { X ,  U. ( P  \  { X } ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   U.cuni 4436   class class class wbr 4653   suc csuc 5725   omcom 7065   1oc1o 7553   2oc2o 7554    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  en2other2  8832  psgnunilem1  17913
  Copyright terms: Public domain W3C validator