![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1onn | Structured version Visualization version Unicode version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 7560 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | peano1 7085 |
. . 3
![]() ![]() ![]() ![]() | |
3 | peano2 7086 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2697 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 df-1o 7560 |
This theorem is referenced by: 2onn 7720 oaabs2 7725 omabs 7727 nnm2 7729 nnneo 7731 nneob 7732 snfi 8038 snnen2o 8149 1sdom2 8159 1sdom 8163 unxpdom2 8168 en1eqsn 8190 en2 8196 pwfi 8261 wofib 8450 oancom 8548 cnfcom3clem 8602 card1 8794 pm54.43lem 8825 en2eleq 8831 en2other2 8832 infxpenlem 8836 infxpenc2lem1 8842 infmap2 9040 sdom2en01 9124 cfpwsdom 9406 canthp1lem2 9475 gchcda1 9478 pwxpndom2 9487 pwcdandom 9489 1pi 9705 1lt2pi 9727 indpi 9729 hash2 13193 hash1snb 13207 setcepi 16738 f1otrspeq 17867 pmtrf 17875 pmtrmvd 17876 pmtrfinv 17881 lt6abl 18296 isnzr2 19263 vr1cl 19587 ply1coe 19666 frgpcyg 19922 isppw 24840 bnj906 31000 finxpreclem1 33226 finxpreclem2 33227 finxp1o 33229 finxpreclem4 33231 finxp2o 33236 |
Copyright terms: Public domain | W3C validator |