| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gastacos | Structured version Visualization version Unicode version | ||
| Description: Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| gasta.1 |
|
| gasta.2 |
|
| orbsta.r |
|
| Ref | Expression |
|---|---|
| gastacos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 |
. . . . . . 7
| |
| 2 | gasta.2 |
. . . . . . 7
| |
| 3 | 1, 2 | gastacl 17742 |
. . . . . 6
|
| 4 | 3 | adantr 481 |
. . . . 5
|
| 5 | subgrcl 17599 |
. . . . 5
| |
| 6 | 4, 5 | syl 17 |
. . . 4
|
| 7 | 1 | subgss 17595 |
. . . . 5
|
| 8 | 4, 7 | syl 17 |
. . . 4
|
| 9 | eqid 2622 |
. . . . 5
| |
| 10 | eqid 2622 |
. . . . 5
| |
| 11 | orbsta.r |
. . . . 5
| |
| 12 | 1, 9, 10, 11 | eqgval 17643 |
. . . 4
|
| 13 | 6, 8, 12 | syl2anc 693 |
. . 3
|
| 14 | df-3an 1039 |
. . 3
| |
| 15 | 13, 14 | syl6bb 276 |
. 2
|
| 16 | simpr 477 |
. . 3
| |
| 17 | 16 | biantrurd 529 |
. 2
|
| 18 | simpll 790 |
. . . . 5
| |
| 19 | simprl 794 |
. . . . . 6
| |
| 20 | 1, 9 | grpinvcl 17467 |
. . . . . 6
|
| 21 | 6, 19, 20 | syl2anc 693 |
. . . . 5
|
| 22 | simprr 796 |
. . . . 5
| |
| 23 | simplr 792 |
. . . . 5
| |
| 24 | 1, 10 | gaass 17730 |
. . . . 5
|
| 25 | 18, 21, 22, 23, 24 | syl13anc 1328 |
. . . 4
|
| 26 | 25 | eqeq1d 2624 |
. . 3
|
| 27 | 1, 10 | grpcl 17430 |
. . . . 5
|
| 28 | 6, 21, 22, 27 | syl3anc 1326 |
. . . 4
|
| 29 | oveq1 6657 |
. . . . . . 7
| |
| 30 | 29 | eqeq1d 2624 |
. . . . . 6
|
| 31 | 30, 2 | elrab2 3366 |
. . . . 5
|
| 32 | 31 | baib 944 |
. . . 4
|
| 33 | 28, 32 | syl 17 |
. . 3
|
| 34 | 1 | gaf 17728 |
. . . . . 6
|
| 35 | 18, 34 | syl 17 |
. . . . 5
|
| 36 | 35, 22, 23 | fovrnd 6806 |
. . . 4
|
| 37 | 1, 9 | gacan 17738 |
. . . 4
|
| 38 | 18, 19, 23, 36, 37 | syl13anc 1328 |
. . 3
|
| 39 | 26, 33, 38 | 3bitr4d 300 |
. 2
|
| 40 | 15, 17, 39 | 3bitr2d 296 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-subg 17591 df-eqg 17593 df-ga 17723 |
| This theorem is referenced by: orbstafun 17744 orbsta 17746 |
| Copyright terms: Public domain | W3C validator |