MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmle Structured version   Visualization version   Unicode version

Theorem lmle 23099
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmle.1  |-  Z  =  ( ZZ>= `  M )
lmle.3  |-  J  =  ( MetOpen `  D )
lmle.4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
lmle.6  |-  ( ph  ->  M  e.  ZZ )
lmle.7  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmle.8  |-  ( ph  ->  Q  e.  X )
lmle.9  |-  ( ph  ->  R  e.  RR* )
lmle.10  |-  ( (
ph  /\  k  e.  Z )  ->  ( Q D ( F `  k ) )  <_  R )
Assertion
Ref Expression
lmle  |-  ( ph  ->  ( Q D P )  <_  R )
Distinct variable groups:    D, k    k, J    ph, k    k, Z   
k, F    P, k    Q, k    R, k    k, X
Allowed substitution hint:    M( k)

Proof of Theorem lmle
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmle.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 lmle.4 . . . . 5  |-  ( ph  ->  D  e.  ( *Met `  X ) )
3 lmle.3 . . . . . 6  |-  J  =  ( MetOpen `  D )
43mopntopon 22244 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
52, 4syl 17 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
6 lmle.6 . . . 4  |-  ( ph  ->  M  e.  ZZ )
7 lmrel 21034 . . . . 5  |-  Rel  ( ~~> t `  J )
8 lmle.7 . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) P )
9 releldm 5358 . . . . 5  |-  ( ( Rel  ( ~~> t `  J )  /\  F
( ~~> t `  J
) P )  ->  F  e.  dom  ( ~~> t `  J ) )
107, 8, 9sylancr 695 . . . 4  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
111, 5, 6, 10lmff 21105 . . 3  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
12 eqid 2622 . . . 4  |-  ( ZZ>= `  j )  =  (
ZZ>= `  j )
135adantr 481 . . . 4  |-  ( (
ph  /\  ( j  e.  Z  /\  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X ) )  ->  J  e.  (TopOn `  X )
)
14 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X ) )  ->  j  e.  Z )
1514, 1syl6eleq 2711 . . . . 5  |-  ( (
ph  /\  ( j  e.  Z  /\  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X ) )  ->  j  e.  ( ZZ>= `  M )
)
16 eluzelz 11697 . . . . 5  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
1715, 16syl 17 . . . 4  |-  ( (
ph  /\  ( j  e.  Z  /\  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X ) )  ->  j  e.  ZZ )
188adantr 481 . . . 4  |-  ( (
ph  /\  ( j  e.  Z  /\  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X ) )  ->  F
( ~~> t `  J
) P )
19 fvres 6207 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  j
)  ->  ( ( F  |`  ( ZZ>= `  j
) ) `  k
)  =  ( F `
 k ) )
2019adantl 482 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  Z  /\  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( F  |`  ( ZZ>= `  j )
) `  k )  =  ( F `  k ) )
21 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X ) )  ->  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X )
2221ffvelrnda 6359 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  Z  /\  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( F  |`  ( ZZ>= `  j )
) `  k )  e.  X )
2320, 22eqeltrrd 2702 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  Z  /\  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( F `  k
)  e.  X )
241uztrn2 11705 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
2514, 24sylan 488 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  Z  /\  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
26 lmle.10 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( Q D ( F `  k ) )  <_  R )
2726adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  Z  /\  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )  /\  k  e.  Z )  ->  ( Q D ( F `  k ) )  <_  R )
2825, 27syldan 487 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  Z  /\  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( Q D ( F `  k ) )  <_  R )
29 oveq2 6658 . . . . . . 7  |-  ( x  =  ( F `  k )  ->  ( Q D x )  =  ( Q D ( F `  k ) ) )
3029breq1d 4663 . . . . . 6  |-  ( x  =  ( F `  k )  ->  (
( Q D x )  <_  R  <->  ( Q D ( F `  k ) )  <_  R ) )
3130elrab 3363 . . . . 5  |-  ( ( F `  k )  e.  { x  e.  X  |  ( Q D x )  <_  R }  <->  ( ( F `
 k )  e.  X  /\  ( Q D ( F `  k ) )  <_  R ) )
3223, 28, 31sylanbrc 698 . . . 4  |-  ( ( ( ph  /\  (
j  e.  Z  /\  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( F `  k
)  e.  { x  e.  X  |  ( Q D x )  <_  R } )
33 lmle.8 . . . . . 6  |-  ( ph  ->  Q  e.  X )
34 lmle.9 . . . . . 6  |-  ( ph  ->  R  e.  RR* )
35 eqid 2622 . . . . . . 7  |-  { x  e.  X  |  ( Q D x )  <_  R }  =  {
x  e.  X  | 
( Q D x )  <_  R }
363, 35blcld 22310 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  R  e.  RR* )  ->  { x  e.  X  |  ( Q D x )  <_  R }  e.  ( Clsd `  J ) )
372, 33, 34, 36syl3anc 1326 . . . . 5  |-  ( ph  ->  { x  e.  X  |  ( Q D x )  <_  R }  e.  ( Clsd `  J ) )
3837adantr 481 . . . 4  |-  ( (
ph  /\  ( j  e.  Z  /\  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X ) )  ->  { x  e.  X  |  ( Q D x )  <_  R }  e.  ( Clsd `  J ) )
3912, 13, 17, 18, 32, 38lmcld 21107 . . 3  |-  ( (
ph  /\  ( j  e.  Z  /\  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X ) )  ->  P  e.  { x  e.  X  |  ( Q D x )  <_  R } )
4011, 39rexlimddv 3035 . 2  |-  ( ph  ->  P  e.  { x  e.  X  |  ( Q D x )  <_  R } )
41 oveq2 6658 . . . . 5  |-  ( x  =  P  ->  ( Q D x )  =  ( Q D P ) )
4241breq1d 4663 . . . 4  |-  ( x  =  P  ->  (
( Q D x )  <_  R  <->  ( Q D P )  <_  R
) )
4342elrab 3363 . . 3  |-  ( P  e.  { x  e.  X  |  ( Q D x )  <_  R }  <->  ( P  e.  X  /\  ( Q D P )  <_  R ) )
4443simprbi 480 . 2  |-  ( P  e.  { x  e.  X  |  ( Q D x )  <_  R }  ->  ( Q D P )  <_  R )
4540, 44syl 17 1  |-  ( ph  ->  ( Q D P )  <_  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   class class class wbr 4653   dom cdm 5114    |` cres 5116   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650   RR*cxr 10073    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   *Metcxmt 19731   MetOpencmopn 19736  TopOnctopon 20715   Clsdccld 20820   ~~> tclm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-lm 21033
This theorem is referenced by:  nglmle  23100  minvecolem4  27736
  Copyright terms: Public domain W3C validator