MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfg Structured version   Visualization version   Unicode version

Theorem trfg 21695
Description: The trace operation and the  filGen operation are inverses to one another in some sense, with  filGen growing the base set and ↾t shrinking it. See fgtr 21694 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfg  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
( X filGen F )t  A )  =  F )

Proof of Theorem trfg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 21652 . . . . . . 7  |-  ( F  e.  ( Fil `  A
)  ->  F  e.  ( fBas `  A )
)
213ad2ant1 1082 . . . . . 6  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  e.  ( fBas `  A
) )
3 filsspw 21655 . . . . . . . 8  |-  ( F  e.  ( Fil `  A
)  ->  F  C_  ~P A )
433ad2ant1 1082 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  C_ 
~P A )
5 simp2 1062 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  A  C_  X )
6 sspwb 4917 . . . . . . . 8  |-  ( A 
C_  X  <->  ~P A  C_ 
~P X )
75, 6sylib 208 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  ~P A  C_  ~P X )
84, 7sstrd 3613 . . . . . 6  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  C_ 
~P X )
9 simp3 1063 . . . . . 6  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  X  e.  V )
10 fbasweak 21669 . . . . . 6  |-  ( ( F  e.  ( fBas `  A )  /\  F  C_ 
~P X  /\  X  e.  V )  ->  F  e.  ( fBas `  X
) )
112, 8, 9, 10syl3anc 1326 . . . . 5  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  e.  ( fBas `  X
) )
12 fgcl 21682 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
1311, 12syl 17 . . . 4  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  ( X filGen F )  e.  ( Fil `  X
) )
14 filtop 21659 . . . . 5  |-  ( F  e.  ( Fil `  A
)  ->  A  e.  F )
15143ad2ant1 1082 . . . 4  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  A  e.  F )
16 restval 16087 . . . 4  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  A  e.  F )  ->  (
( X filGen F )t  A )  =  ran  (
x  e.  ( X
filGen F )  |->  ( x  i^i  A ) ) )
1713, 15, 16syl2anc 693 . . 3  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
( X filGen F )t  A )  =  ran  (
x  e.  ( X
filGen F )  |->  ( x  i^i  A ) ) )
18 elfg 21675 . . . . . . . 8  |-  ( F  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen F )  <-> 
( x  C_  X  /\  E. y  e.  F  y  C_  x ) ) )
1911, 18syl 17 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
x  e.  ( X
filGen F )  <->  ( x  C_  X  /\  E. y  e.  F  y  C_  x ) ) )
2019simplbda 654 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  ->  E. y  e.  F  y  C_  x )
21 simpll1 1100 . . . . . . 7  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  ->  F  e.  ( Fil `  A ) )
22 simprl 794 . . . . . . 7  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
y  e.  F )
23 inss2 3834 . . . . . . . 8  |-  ( x  i^i  A )  C_  A
2423a1i 11 . . . . . . 7  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
( x  i^i  A
)  C_  A )
25 simprr 796 . . . . . . . 8  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
y  C_  x )
26 filelss 21656 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  A )  /\  y  e.  F )  ->  y  C_  A )
27263ad2antl1 1223 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  y  e.  F )  ->  y  C_  A )
2827ad2ant2r 783 . . . . . . . 8  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
y  C_  A )
2925, 28ssind 3837 . . . . . . 7  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
y  C_  ( x  i^i  A ) )
30 filss 21657 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  (
y  e.  F  /\  ( x  i^i  A ) 
C_  A  /\  y  C_  ( x  i^i  A
) ) )  -> 
( x  i^i  A
)  e.  F )
3121, 22, 24, 29, 30syl13anc 1328 . . . . . 6  |-  ( ( ( ( F  e.  ( Fil `  A
)  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  /\  ( y  e.  F  /\  y  C_  x ) )  -> 
( x  i^i  A
)  e.  F )
3220, 31rexlimddv 3035 . . . . 5  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  ( X filGen F ) )  ->  ( x  i^i 
A )  e.  F
)
33 eqid 2622 . . . . 5  |-  ( x  e.  ( X filGen F )  |->  ( x  i^i 
A ) )  =  ( x  e.  ( X filGen F )  |->  ( x  i^i  A ) )
3432, 33fmptd 6385 . . . 4  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
x  e.  ( X
filGen F )  |->  ( x  i^i  A ) ) : ( X filGen F ) --> F )
35 frn 6053 . . . 4  |-  ( ( x  e.  ( X
filGen F )  |->  ( x  i^i  A ) ) : ( X filGen F ) --> F  ->  ran  ( x  e.  ( X filGen F )  |->  ( x  i^i  A ) )  C_  F )
3634, 35syl 17 . . 3  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  ran  ( x  e.  ( X filGen F )  |->  ( x  i^i  A ) )  C_  F )
3717, 36eqsstrd 3639 . 2  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
( X filGen F )t  A )  C_  F )
38 filelss 21656 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  x  e.  F )  ->  x  C_  A )
39383ad2antl1 1223 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  x  C_  A )
40 df-ss 3588 . . . . . 6  |-  ( x 
C_  A  <->  ( x  i^i  A )  =  x )
4139, 40sylib 208 . . . . 5  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  (
x  i^i  A )  =  x )
4213adantr 481 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  ( X filGen F )  e.  ( Fil `  X
) )
4315adantr 481 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  A  e.  F )
44 ssfg 21676 . . . . . . . 8  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
4511, 44syl 17 . . . . . . 7  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  C_  ( X filGen F ) )
4645sselda 3603 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  x  e.  ( X filGen F ) )
47 elrestr 16089 . . . . . 6  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  A  e.  F  /\  x  e.  ( X filGen F ) )  ->  ( x  i^i 
A )  e.  ( ( X filGen F )t  A ) )
4842, 43, 46, 47syl3anc 1326 . . . . 5  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( ( X filGen F )t  A ) )
4941, 48eqeltrrd 2702 . . . 4  |-  ( ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V
)  /\  x  e.  F )  ->  x  e.  ( ( X filGen F )t  A ) )
5049ex 450 . . 3  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
x  e.  F  ->  x  e.  ( ( X filGen F )t  A ) ) )
5150ssrdv 3609 . 2  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  F  C_  ( ( X filGen F )t  A ) )
5237, 51eqssd 3620 1  |-  ( ( F  e.  ( Fil `  A )  /\  A  C_  X  /\  X  e.  V )  ->  (
( X filGen F )t  A )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   fBascfbas 19734   filGencfg 19735   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083  df-fbas 19743  df-fg 19744  df-fil 21650
This theorem is referenced by:  cmetss  23113  minveclem4a  23201
  Copyright terms: Public domain W3C validator