MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finnisoeu Structured version   Visualization version   Unicode version

Theorem finnisoeu 8936
Description: A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
finnisoeu  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  E! f  f  Isom  _E  ,  R  ( (
card `  A ) ,  A ) )
Distinct variable groups:    R, f    A, f

Proof of Theorem finnisoeu
StepHypRef Expression
1 eqid 2622 . . . . 5  |- OrdIso ( R ,  A )  = OrdIso
( R ,  A
)
21oiexg 8440 . . . 4  |-  ( A  e.  Fin  -> OrdIso ( R ,  A )  e. 
_V )
32adantl 482 . . 3  |-  ( ( R  Or  A  /\  A  e.  Fin )  -> OrdIso ( R ,  A
)  e.  _V )
4 simpr 477 . . . . 5  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  A  e.  Fin )
5 wofi 8209 . . . . 5  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  R  We  A )
61oiiso 8442 . . . . 5  |-  ( ( A  e.  Fin  /\  R  We  A )  -> OrdIso ( R ,  A
)  Isom  _E  ,  R  ( dom OrdIso ( R ,  A ) ,  A
) )
74, 5, 6syl2anc 693 . . . 4  |-  ( ( R  Or  A  /\  A  e.  Fin )  -> OrdIso ( R ,  A
)  Isom  _E  ,  R  ( dom OrdIso ( R ,  A ) ,  A
) )
81oien 8443 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  R  We  A )  ->  dom OrdIso ( R ,  A )  ~~  A
)
94, 5, 8syl2anc 693 . . . . . . 7  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  dom OrdIso ( R ,  A )  ~~  A
)
10 ficardid 8788 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( card `  A )  ~~  A )
1110adantl 482 . . . . . . . 8  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  ( card `  A
)  ~~  A )
1211ensymd 8007 . . . . . . 7  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  A  ~~  ( card `  A ) )
13 entr 8008 . . . . . . 7  |-  ( ( dom OrdIso ( R ,  A )  ~~  A  /\  A  ~~  ( card `  A ) )  ->  dom OrdIso ( R ,  A
)  ~~  ( card `  A ) )
149, 12, 13syl2anc 693 . . . . . 6  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  dom OrdIso ( R ,  A )  ~~  ( card `  A ) )
151oion 8441 . . . . . . . 8  |-  ( A  e.  Fin  ->  dom OrdIso ( R ,  A )  e.  On )
1615adantl 482 . . . . . . 7  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  dom OrdIso ( R ,  A )  e.  On )
17 ficardom 8787 . . . . . . . 8  |-  ( A  e.  Fin  ->  ( card `  A )  e. 
om )
1817adantl 482 . . . . . . 7  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  ( card `  A
)  e.  om )
19 onomeneq 8150 . . . . . . 7  |-  ( ( dom OrdIso ( R ,  A )  e.  On  /\  ( card `  A
)  e.  om )  ->  ( dom OrdIso ( R ,  A )  ~~  ( card `  A )  <->  dom OrdIso ( R ,  A )  =  ( card `  A
) ) )
2016, 18, 19syl2anc 693 . . . . . 6  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  ( dom OrdIso ( R ,  A )  ~~  ( card `  A )  <->  dom OrdIso ( R ,  A )  =  ( card `  A
) ) )
2114, 20mpbid 222 . . . . 5  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  dom OrdIso ( R ,  A )  =  (
card `  A )
)
22 isoeq4 6570 . . . . 5  |-  ( dom OrdIso ( R ,  A )  =  ( card `  A
)  ->  (OrdIso ( R ,  A )  Isom  _E  ,  R  ( dom OrdIso ( R ,  A ) ,  A
)  <-> OrdIso ( R ,  A
)  Isom  _E  ,  R  ( ( card `  A
) ,  A ) ) )
2321, 22syl 17 . . . 4  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  (OrdIso ( R ,  A )  Isom  _E  ,  R  ( dom OrdIso ( R ,  A ) ,  A )  <-> OrdIso ( R ,  A )  Isom  _E  ,  R  ( ( card `  A ) ,  A
) ) )
247, 23mpbid 222 . . 3  |-  ( ( R  Or  A  /\  A  e.  Fin )  -> OrdIso ( R ,  A
)  Isom  _E  ,  R  ( ( card `  A
) ,  A ) )
25 isoeq1 6567 . . . 4  |-  ( f  = OrdIso ( R ,  A )  ->  (
f  Isom  _E  ,  R  ( ( card `  A
) ,  A )  <-> OrdIso ( R ,  A ) 
Isom  _E  ,  R  ( ( card `  A
) ,  A ) ) )
2625spcegv 3294 . . 3  |-  (OrdIso ( R ,  A )  e.  _V  ->  (OrdIso ( R ,  A )  Isom  _E  ,  R  ( ( card `  A
) ,  A )  ->  E. f  f  Isom  _E  ,  R  ( (
card `  A ) ,  A ) ) )
273, 24, 26sylc 65 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  E. f  f  Isom  _E  ,  R  ( (
card `  A ) ,  A ) )
28 wemoiso2 7154 . . 3  |-  ( R  We  A  ->  E* f  f  Isom  _E  ,  R  ( ( card `  A ) ,  A
) )
295, 28syl 17 . 2  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  E* f  f  Isom  _E  ,  R  ( (
card `  A ) ,  A ) )
30 eu5 2496 . 2  |-  ( E! f  f  Isom  _E  ,  R  ( ( card `  A ) ,  A
)  <->  ( E. f 
f  Isom  _E  ,  R  ( ( card `  A
) ,  A )  /\  E* f  f 
Isom  _E  ,  R  ( ( card `  A
) ,  A ) ) )
3127, 29, 30sylanbrc 698 1  |-  ( ( R  Or  A  /\  A  e.  Fin )  ->  E! f  f  Isom  _E  ,  R  ( (
card `  A ) ,  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   E*wmo 2471   _Vcvv 3200   class class class wbr 4653    _E cep 5028    Or wor 5034    We wwe 5072   dom cdm 5114   Oncon0 5723   ` cfv 5888    Isom wiso 5889   omcom 7065    ~~ cen 7952   Fincfn 7955  OrdIsocoi 8414   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765
This theorem is referenced by:  iunfictbso  8937
  Copyright terms: Public domain W3C validator