MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem7 Structured version   Visualization version   Unicode version

Theorem fpwwe2lem7 9458
Description: Lemma for fpwwe2 9465. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
fpwwe2.3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
fpwwe2lem9.x  |-  ( ph  ->  X W R )
fpwwe2lem9.y  |-  ( ph  ->  Y W S )
fpwwe2lem9.m  |-  M  = OrdIso
( R ,  X
)
fpwwe2lem9.n  |-  N  = OrdIso
( S ,  Y
)
fpwwe2lem7.1  |-  ( ph  ->  B  e.  dom  M
)
fpwwe2lem7.2  |-  ( ph  ->  B  e.  dom  N
)
fpwwe2lem7.3  |-  ( ph  ->  ( M  |`  B )  =  ( N  |`  B ) )
Assertion
Ref Expression
fpwwe2lem7  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( C S ( N `  B )  /\  ( D R ( M `  B )  ->  ( C R D  <->  C S D ) ) ) )
Distinct variable groups:    y, u, B    u, r, x, y, F    X, r, u, x, y    M, r, u, x, y    N, r, u, x, y    ph, r, u, x, y    A, r, x    R, r, u, x, y    Y, r, u, x, y    S, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    A( y, u)    B( x, r)    C( x, y, u, r)    D( x, y, u, r)

Proof of Theorem fpwwe2lem7
StepHypRef Expression
1 fpwwe2lem9.y . . . . . . . 8  |-  ( ph  ->  Y W S )
2 fpwwe2.1 . . . . . . . . . 10  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
32relopabi 5245 . . . . . . . . 9  |-  Rel  W
43brrelexi 5158 . . . . . . . 8  |-  ( Y W S  ->  Y  e.  _V )
51, 4syl 17 . . . . . . 7  |-  ( ph  ->  Y  e.  _V )
6 fpwwe2.2 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  _V )
72, 6fpwwe2lem2 9454 . . . . . . . . . 10  |-  ( ph  ->  ( Y W S  <-> 
( ( Y  C_  A  /\  S  C_  ( Y  X.  Y ) )  /\  ( S  We  Y  /\  A. y  e.  Y  [. ( `' S " { y } )  /  u ]. ( u F ( S  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
81, 7mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  C_  A  /\  S  C_  ( Y  X.  Y ) )  /\  ( S  We  Y  /\  A. y  e.  Y  [. ( `' S " { y } )  /  u ]. ( u F ( S  i^i  ( u  X.  u ) ) )  =  y ) ) )
98simprd 479 . . . . . . . 8  |-  ( ph  ->  ( S  We  Y  /\  A. y  e.  Y  [. ( `' S " { y } )  /  u ]. (
u F ( S  i^i  ( u  X.  u ) ) )  =  y ) )
109simpld 475 . . . . . . 7  |-  ( ph  ->  S  We  Y )
11 fpwwe2lem9.n . . . . . . . 8  |-  N  = OrdIso
( S ,  Y
)
1211oiiso 8442 . . . . . . 7  |-  ( ( Y  e.  _V  /\  S  We  Y )  ->  N  Isom  _E  ,  S  ( dom  N ,  Y
) )
135, 10, 12syl2anc 693 . . . . . 6  |-  ( ph  ->  N  Isom  _E  ,  S  ( dom  N ,  Y
) )
1413adantr 481 . . . . 5  |-  ( (
ph  /\  C R
( M `  B
) )  ->  N  Isom  _E  ,  S  ( dom  N ,  Y
) )
15 isof1o 6573 . . . . 5  |-  ( N 
Isom  _E  ,  S  ( dom  N ,  Y
)  ->  N : dom  N -1-1-onto-> Y )
1614, 15syl 17 . . . 4  |-  ( (
ph  /\  C R
( M `  B
) )  ->  N : dom  N -1-1-onto-> Y )
17 fpwwe2.3 . . . . . 6  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
18 fpwwe2lem9.x . . . . . 6  |-  ( ph  ->  X W R )
19 fpwwe2lem9.m . . . . . 6  |-  M  = OrdIso
( R ,  X
)
20 fpwwe2lem7.1 . . . . . 6  |-  ( ph  ->  B  e.  dom  M
)
21 fpwwe2lem7.2 . . . . . 6  |-  ( ph  ->  B  e.  dom  N
)
22 fpwwe2lem7.3 . . . . . 6  |-  ( ph  ->  ( M  |`  B )  =  ( N  |`  B ) )
232, 6, 17, 18, 1, 19, 11, 20, 21, 22fpwwe2lem6 9457 . . . . 5  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( C  e.  X  /\  C  e.  Y  /\  ( `' M `  C )  =  ( `' N `  C ) ) )
2423simp2d 1074 . . . 4  |-  ( (
ph  /\  C R
( M `  B
) )  ->  C  e.  Y )
25 f1ocnvfv2 6533 . . . 4  |-  ( ( N : dom  N -1-1-onto-> Y  /\  C  e.  Y
)  ->  ( N `  ( `' N `  C ) )  =  C )
2616, 24, 25syl2anc 693 . . 3  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( N `  ( `' N `  C )
)  =  C )
2723simp3d 1075 . . . . 5  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( `' M `  C )  =  ( `' N `  C ) )
283brrelexi 5158 . . . . . . . . . . . 12  |-  ( X W R  ->  X  e.  _V )
2918, 28syl 17 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  _V )
302, 6fpwwe2lem2 9454 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
3118, 30mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )
3231simprd 479 . . . . . . . . . . . 12  |-  ( ph  ->  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y ) )
3332simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  R  We  X )
3419oiiso 8442 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  R  We  X )  ->  M  Isom  _E  ,  R  ( dom  M ,  X
) )
3529, 33, 34syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  M  Isom  _E  ,  R  ( dom  M ,  X
) )
3635adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  C R
( M `  B
) )  ->  M  Isom  _E  ,  R  ( dom  M ,  X
) )
37 isof1o 6573 . . . . . . . . 9  |-  ( M 
Isom  _E  ,  R  ( dom  M ,  X
)  ->  M : dom  M -1-1-onto-> X )
3836, 37syl 17 . . . . . . . 8  |-  ( (
ph  /\  C R
( M `  B
) )  ->  M : dom  M -1-1-onto-> X )
3923simp1d 1073 . . . . . . . 8  |-  ( (
ph  /\  C R
( M `  B
) )  ->  C  e.  X )
40 f1ocnvfv2 6533 . . . . . . . 8  |-  ( ( M : dom  M -1-1-onto-> X  /\  C  e.  X
)  ->  ( M `  ( `' M `  C ) )  =  C )
4138, 39, 40syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( M `  ( `' M `  C )
)  =  C )
42 simpr 477 . . . . . . 7  |-  ( (
ph  /\  C R
( M `  B
) )  ->  C R ( M `  B ) )
4341, 42eqbrtrd 4675 . . . . . 6  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( M `  ( `' M `  C )
) R ( M `
 B ) )
44 f1ocnv 6149 . . . . . . . . 9  |-  ( M : dom  M -1-1-onto-> X  ->  `' M : X -1-1-onto-> dom  M
)
45 f1of 6137 . . . . . . . . 9  |-  ( `' M : X -1-1-onto-> dom  M  ->  `' M : X --> dom  M
)
4638, 44, 453syl 18 . . . . . . . 8  |-  ( (
ph  /\  C R
( M `  B
) )  ->  `' M : X --> dom  M
)
4746, 39ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( `' M `  C )  e.  dom  M )
4820adantr 481 . . . . . . 7  |-  ( (
ph  /\  C R
( M `  B
) )  ->  B  e.  dom  M )
49 isorel 6576 . . . . . . 7  |-  ( ( M  Isom  _E  ,  R  ( dom  M ,  X
)  /\  ( ( `' M `  C )  e.  dom  M  /\  B  e.  dom  M ) )  ->  ( ( `' M `  C )  _E  B  <->  ( M `  ( `' M `  C ) ) R ( M `  B
) ) )
5036, 47, 48, 49syl12anc 1324 . . . . . 6  |-  ( (
ph  /\  C R
( M `  B
) )  ->  (
( `' M `  C )  _E  B  <->  ( M `  ( `' M `  C ) ) R ( M `
 B ) ) )
5143, 50mpbird 247 . . . . 5  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( `' M `  C )  _E  B )
5227, 51eqbrtrrd 4677 . . . 4  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( `' N `  C )  _E  B )
53 f1ocnv 6149 . . . . . . 7  |-  ( N : dom  N -1-1-onto-> Y  ->  `' N : Y -1-1-onto-> dom  N
)
54 f1of 6137 . . . . . . 7  |-  ( `' N : Y -1-1-onto-> dom  N  ->  `' N : Y --> dom  N
)
5516, 53, 543syl 18 . . . . . 6  |-  ( (
ph  /\  C R
( M `  B
) )  ->  `' N : Y --> dom  N
)
5655, 24ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( `' N `  C )  e.  dom  N )
5721adantr 481 . . . . 5  |-  ( (
ph  /\  C R
( M `  B
) )  ->  B  e.  dom  N )
58 isorel 6576 . . . . 5  |-  ( ( N  Isom  _E  ,  S  ( dom  N ,  Y
)  /\  ( ( `' N `  C )  e.  dom  N  /\  B  e.  dom  N ) )  ->  ( ( `' N `  C )  _E  B  <->  ( N `  ( `' N `  C ) ) S ( N `  B
) ) )
5914, 56, 57, 58syl12anc 1324 . . . 4  |-  ( (
ph  /\  C R
( M `  B
) )  ->  (
( `' N `  C )  _E  B  <->  ( N `  ( `' N `  C ) ) S ( N `
 B ) ) )
6052, 59mpbid 222 . . 3  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( N `  ( `' N `  C )
) S ( N `
 B ) )
6126, 60eqbrtrrd 4677 . 2  |-  ( (
ph  /\  C R
( M `  B
) )  ->  C S ( N `  B ) )
6227adantrr 753 . . . . 5  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  ( `' M `  C )  =  ( `' N `  C ) )
632, 6, 17, 18, 1, 19, 11, 20, 21, 22fpwwe2lem6 9457 . . . . . . 7  |-  ( (
ph  /\  D R
( M `  B
) )  ->  ( D  e.  X  /\  D  e.  Y  /\  ( `' M `  D )  =  ( `' N `  D ) ) )
6463simp3d 1075 . . . . . 6  |-  ( (
ph  /\  D R
( M `  B
) )  ->  ( `' M `  D )  =  ( `' N `  D ) )
6564adantrl 752 . . . . 5  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  ( `' M `  D )  =  ( `' N `  D ) )
6662, 65breq12d 4666 . . . 4  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  ( ( `' M `  C )  _E  ( `' M `  D )  <->  ( `' N `  C )  _E  ( `' N `  D ) ) )
6735adantr 481 . . . . . 6  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  M  Isom  _E  ,  R  ( dom  M ,  X ) )
68 isocnv 6580 . . . . . 6  |-  ( M 
Isom  _E  ,  R  ( dom  M ,  X
)  ->  `' M  Isom  R ,  _E  ( X ,  dom  M ) )
6967, 68syl 17 . . . . 5  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  `' M  Isom  R ,  _E  ( X ,  dom  M ) )
7039adantrr 753 . . . . 5  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  C  e.  X
)
7131simpld 475 . . . . . . . . . 10  |-  ( ph  ->  ( X  C_  A  /\  R  C_  ( X  X.  X ) ) )
7271simprd 479 . . . . . . . . 9  |-  ( ph  ->  R  C_  ( X  X.  X ) )
7372ssbrd 4696 . . . . . . . 8  |-  ( ph  ->  ( D R ( M `  B )  ->  D ( X  X.  X ) ( M `  B ) ) )
7473imp 445 . . . . . . 7  |-  ( (
ph  /\  D R
( M `  B
) )  ->  D
( X  X.  X
) ( M `  B ) )
75 brxp 5147 . . . . . . . 8  |-  ( D ( X  X.  X
) ( M `  B )  <->  ( D  e.  X  /\  ( M `  B )  e.  X ) )
7675simplbi 476 . . . . . . 7  |-  ( D ( X  X.  X
) ( M `  B )  ->  D  e.  X )
7774, 76syl 17 . . . . . 6  |-  ( (
ph  /\  D R
( M `  B
) )  ->  D  e.  X )
7877adantrl 752 . . . . 5  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  D  e.  X
)
79 isorel 6576 . . . . 5  |-  ( ( `' M  Isom  R ,  _E  ( X ,  dom  M )  /\  ( C  e.  X  /\  D  e.  X ) )  -> 
( C R D  <-> 
( `' M `  C )  _E  ( `' M `  D ) ) )
8069, 70, 78, 79syl12anc 1324 . . . 4  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  ( C R D  <->  ( `' M `  C )  _E  ( `' M `  D ) ) )
8113adantr 481 . . . . . 6  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  N  Isom  _E  ,  S  ( dom  N ,  Y ) )
82 isocnv 6580 . . . . . 6  |-  ( N 
Isom  _E  ,  S  ( dom  N ,  Y
)  ->  `' N  Isom  S ,  _E  ( Y ,  dom  N ) )
8381, 82syl 17 . . . . 5  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  `' N  Isom  S ,  _E  ( Y ,  dom  N ) )
8424adantrr 753 . . . . 5  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  C  e.  Y
)
8563simp2d 1074 . . . . . 6  |-  ( (
ph  /\  D R
( M `  B
) )  ->  D  e.  Y )
8685adantrl 752 . . . . 5  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  D  e.  Y
)
87 isorel 6576 . . . . 5  |-  ( ( `' N  Isom  S ,  _E  ( Y ,  dom  N )  /\  ( C  e.  Y  /\  D  e.  Y ) )  -> 
( C S D  <-> 
( `' N `  C )  _E  ( `' N `  D ) ) )
8883, 84, 86, 87syl12anc 1324 . . . 4  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  ( C S D  <->  ( `' N `  C )  _E  ( `' N `  D ) ) )
8966, 80, 883bitr4d 300 . . 3  |-  ( (
ph  /\  ( C R ( M `  B )  /\  D R ( M `  B ) ) )  ->  ( C R D  <->  C S D ) )
9089expr 643 . 2  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( D R ( M `  B )  ->  ( C R D  <->  C S D ) ) )
9161, 90jca 554 1  |-  ( (
ph  /\  C R
( M `  B
) )  ->  ( C S ( N `  B )  /\  ( D R ( M `  B )  ->  ( C R D  <->  C S D ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574   {csn 4177   class class class wbr 4653   {copab 4712    _E cep 5028    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-wrecs 7407  df-recs 7468  df-oi 8415
This theorem is referenced by:  fpwwe2lem8  9459
  Copyright terms: Public domain W3C validator