Proof of Theorem fpwwe2lem7
| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe2lem9.y |
. . . . . . . 8
     |
| 2 | | fpwwe2.1 |
. . . . . . . . . 10
   
 
              ![]. ].](_drbrack.gif)             |
| 3 | 2 | relopabi 5245 |
. . . . . . . . 9
 |
| 4 | 3 | brrelexi 5158 |
. . . . . . . 8
     |
| 5 | 1, 4 | syl 17 |
. . . . . . 7
   |
| 6 | | fpwwe2.2 |
. . . . . . . . . . 11
   |
| 7 | 2, 6 | fpwwe2lem2 9454 |
. . . . . . . . . 10
                    ![]. ].](_drbrack.gif)              |
| 8 | 1, 7 | mpbid 222 |
. . . . . . . . 9
                 ![]. ].](_drbrack.gif)             |
| 9 | 8 | simprd 479 |
. . . . . . . 8
            ![]. ].](_drbrack.gif)            |
| 10 | 9 | simpld 475 |
. . . . . . 7
   |
| 11 | | fpwwe2lem9.n |
. . . . . . . 8
OrdIso    |
| 12 | 11 | oiiso 8442 |
. . . . . . 7
 

     |
| 13 | 5, 10, 12 | syl2anc 693 |
. . . . . 6

     |
| 14 | 13 | adantr 481 |
. . . . 5
 
            |
| 15 | | isof1o 6573 |
. . . . 5

  
      |
| 16 | 14, 15 | syl 17 |
. . . 4
 
             |
| 17 | | fpwwe2.3 |
. . . . . 6
 
 

        |
| 18 | | fpwwe2lem9.x |
. . . . . 6
     |
| 19 | | fpwwe2lem9.m |
. . . . . 6
OrdIso    |
| 20 | | fpwwe2lem7.1 |
. . . . . 6
   |
| 21 | | fpwwe2lem7.2 |
. . . . . 6
   |
| 22 | | fpwwe2lem7.3 |
. . . . . 6
       |
| 23 | 2, 6, 17, 18, 1, 19, 11, 20, 21, 22 | fpwwe2lem6 9457 |
. . . . 5
 
       
             |
| 24 | 23 | simp2d 1074 |
. . . 4
 
         |
| 25 | | f1ocnvfv2 6533 |
. . . 4
     

           |
| 26 | 16, 24, 25 | syl2anc 693 |
. . 3
 
                  |
| 27 | 23 | simp3d 1075 |
. . . . 5
 
                   |
| 28 | 3 | brrelexi 5158 |
. . . . . . . . . . . 12
     |
| 29 | 18, 28 | syl 17 |
. . . . . . . . . . 11
   |
| 30 | 2, 6 | fpwwe2lem2 9454 |
. . . . . . . . . . . . . 14
                    ![]. ].](_drbrack.gif)              |
| 31 | 18, 30 | mpbid 222 |
. . . . . . . . . . . . 13
                 ![]. ].](_drbrack.gif)             |
| 32 | 31 | simprd 479 |
. . . . . . . . . . . 12
            ![]. ].](_drbrack.gif)            |
| 33 | 32 | simpld 475 |
. . . . . . . . . . 11
   |
| 34 | 19 | oiiso 8442 |
. . . . . . . . . . 11
 

     |
| 35 | 29, 33, 34 | syl2anc 693 |
. . . . . . . . . 10

     |
| 36 | 35 | adantr 481 |
. . . . . . . . 9
 
            |
| 37 | | isof1o 6573 |
. . . . . . . . 9

  
      |
| 38 | 36, 37 | syl 17 |
. . . . . . . 8
 
             |
| 39 | 23 | simp1d 1073 |
. . . . . . . 8
 
         |
| 40 | | f1ocnvfv2 6533 |
. . . . . . . 8
     

           |
| 41 | 38, 39, 40 | syl2anc 693 |
. . . . . . 7
 
                  |
| 42 | | simpr 477 |
. . . . . . 7
 
               |
| 43 | 41, 42 | eqbrtrd 4675 |
. . . . . 6
 
                        |
| 44 | | f1ocnv 6149 |
. . . . . . . . 9
            |
| 45 | | f1of 6137 |
. . . . . . . . 9
             |
| 46 | 38, 44, 45 | 3syl 18 |
. . . . . . . 8
 
              |
| 47 | 46, 39 | ffvelrnd 6360 |
. . . . . . 7
 
              |
| 48 | 20 | adantr 481 |
. . . . . . 7
 
         |
| 49 | | isorel 6576 |
. . . . . . 7
 
  
     
 
     
                  |
| 50 | 36, 47, 48, 49 | syl12anc 1324 |
. . . . . 6
 
                               |
| 51 | 43, 50 | mpbird 247 |
. . . . 5
 
              |
| 52 | 27, 51 | eqbrtrrd 4677 |
. . . 4
 
              |
| 53 | | f1ocnv 6149 |
. . . . . . 7
            |
| 54 | | f1of 6137 |
. . . . . . 7
             |
| 55 | 16, 53, 54 | 3syl 18 |
. . . . . 6
 
              |
| 56 | 55, 24 | ffvelrnd 6360 |
. . . . 5
 
              |
| 57 | 21 | adantr 481 |
. . . . 5
 
         |
| 58 | | isorel 6576 |
. . . . 5
 
  
     
 
     
                  |
| 59 | 14, 56, 57, 58 | syl12anc 1324 |
. . . 4
 
                               |
| 60 | 52, 59 | mpbid 222 |
. . 3
 
                        |
| 61 | 26, 60 | eqbrtrrd 4677 |
. 2
 
               |
| 62 | 27 | adantrr 753 |
. . . . 5
 
                           |
| 63 | 2, 6, 17, 18, 1, 19, 11, 20, 21, 22 | fpwwe2lem6 9457 |
. . . . . . 7
 
       
             |
| 64 | 63 | simp3d 1075 |
. . . . . 6
 
                   |
| 65 | 64 | adantrl 752 |
. . . . 5
 
                           |
| 66 | 62, 65 | breq12d 4666 |
. . . 4
 
                         
             |
| 67 | 35 | adantr 481 |
. . . . . 6
 
                    |
| 68 | | isocnv 6580 |
. . . . . 6

  
   
   |
| 69 | 67, 68 | syl 17 |
. . . . 5
 
                      |
| 70 | 39 | adantrr 753 |
. . . . 5
 
                 |
| 71 | 31 | simpld 475 |
. . . . . . . . . 10
 
     |
| 72 | 71 | simprd 479 |
. . . . . . . . 9

    |
| 73 | 72 | ssbrd 4696 |
. . . . . . . 8
                   |
| 74 | 73 | imp 445 |
. . . . . . 7
 
                 |
| 75 | | brxp 5147 |
. . . . . . . 8
        

       |
| 76 | 75 | simplbi 476 |
. . . . . . 7
           |
| 77 | 74, 76 | syl 17 |
. . . . . 6
 
         |
| 78 | 77 | adantrl 752 |
. . . . 5
 
                 |
| 79 | | isorel 6576 |
. . . . 5
  
                       |
| 80 | 69, 70, 78, 79 | syl12anc 1324 |
. . . 4
 
                               |
| 81 | 13 | adantr 481 |
. . . . . 6
 
                    |
| 82 | | isocnv 6580 |
. . . . . 6

  
   
   |
| 83 | 81, 82 | syl 17 |
. . . . 5
 
                      |
| 84 | 24 | adantrr 753 |
. . . . 5
 
                 |
| 85 | 63 | simp2d 1074 |
. . . . . 6
 
         |
| 86 | 85 | adantrl 752 |
. . . . 5
 
                 |
| 87 | | isorel 6576 |
. . . . 5
  
                       |
| 88 | 83, 84, 86, 87 | syl12anc 1324 |
. . . 4
 
                               |
| 89 | 66, 80, 88 | 3bitr4d 300 |
. . 3
 
                       |
| 90 | 89 | expr 643 |
. 2
 
                
      |
| 91 | 61, 90 | jca 554 |
1
 
                       
       |