MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem2 Structured version   Visualization version   Unicode version

Theorem hartogslem2 8448
Description: Lemma for hartogs 8449. (Contributed by Mario Carneiro, 14-Jan-2013.)
Hypotheses
Ref Expression
hartogslem.2  |-  F  =  { <. r ,  y
>.  |  ( (
( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
hartogslem.3  |-  R  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
Assertion
Ref Expression
hartogslem2  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
Distinct variable groups:    f, s,
t, w, y, z   
f, r, x, A, y    R, r, x    V, r, y
Allowed substitution hints:    A( z, w, t, s)    R( y, z, w, t, f, s)    F( x, y, z, w, t, f, s, r)    V( x, z, w, t, f, s)

Proof of Theorem hartogslem2
StepHypRef Expression
1 hartogslem.2 . . . 4  |-  F  =  { <. r ,  y
>.  |  ( (
( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
2 hartogslem.3 . . . 4  |-  R  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
31, 2hartogslem1 8447 . . 3  |-  ( dom 
F  C_  ~P ( A  X.  A )  /\  Fun  F  /\  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } ) )
43simp3i 1072 . 2  |-  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } )
53simp2i 1071 . . . 4  |-  Fun  F
63simp1i 1070 . . . . 5  |-  dom  F  C_ 
~P ( A  X.  A )
7 sqxpexg 6963 . . . . . 6  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
8 pwexg 4850 . . . . . 6  |-  ( ( A  X.  A )  e.  _V  ->  ~P ( A  X.  A
)  e.  _V )
97, 8syl 17 . . . . 5  |-  ( A  e.  V  ->  ~P ( A  X.  A
)  e.  _V )
10 ssexg 4804 . . . . 5  |-  ( ( dom  F  C_  ~P ( A  X.  A
)  /\  ~P ( A  X.  A )  e. 
_V )  ->  dom  F  e.  _V )
116, 9, 10sylancr 695 . . . 4  |-  ( A  e.  V  ->  dom  F  e.  _V )
12 funex 6482 . . . 4  |-  ( ( Fun  F  /\  dom  F  e.  _V )  ->  F  e.  _V )
135, 11, 12sylancr 695 . . 3  |-  ( A  e.  V  ->  F  e.  _V )
14 rnexg 7098 . . 3  |-  ( F  e.  _V  ->  ran  F  e.  _V )
1513, 14syl 17 . 2  |-  ( A  e.  V  ->  ran  F  e.  _V )
164, 15eqeltrrd 2702 1  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   {copab 4712    _I cid 5023    _E cep 5028    We wwe 5072    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   Oncon0 5723   Fun wfun 5882   ` cfv 5888    ~<_ cdom 7953  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-en 7956  df-dom 7957  df-oi 8415
This theorem is referenced by:  hartogs  8449
  Copyright terms: Public domain W3C validator