MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulclem Structured version   Visualization version   Unicode version

Theorem i1fmulclem 23469
Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2  |-  ( ph  ->  F  e.  dom  S.1 )
i1fmulc.3  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
i1fmulclem  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  ( `' ( ( RR 
X.  { A }
)  oF  x.  F ) " { B } )  =  ( `' F " { ( B  /  A ) } ) )

Proof of Theorem i1fmulclem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10027 . . . . . . . . . 10  |-  RR  e.  _V
21a1i 11 . . . . . . . . 9  |-  ( ph  ->  RR  e.  _V )
3 i1fmulc.3 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
4 i1fmulc.2 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  dom  S.1 )
5 i1ff 23443 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
64, 5syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : RR --> RR )
7 ffn 6045 . . . . . . . . . 10  |-  ( F : RR --> RR  ->  F  Fn  RR )
86, 7syl 17 . . . . . . . . 9  |-  ( ph  ->  F  Fn  RR )
9 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  RR )  ->  ( F `
 z )  =  ( F `  z
) )
102, 3, 8, 9ofc1 6920 . . . . . . . 8  |-  ( (
ph  /\  z  e.  RR )  ->  ( ( ( RR  X.  { A } )  oF  x.  F ) `  z )  =  ( A  x.  ( F `
 z ) ) )
1110adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  z  e.  RR )  ->  (
( ( RR  X.  { A } )  oF  x.  F ) `
 z )  =  ( A  x.  ( F `  z )
) )
1211adantlr 751 . . . . . 6  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( ( RR  X.  { A } )  oF  x.  F ) `  z )  =  ( A  x.  ( F `
 z ) ) )
1312eqeq1d 2624 . . . . 5  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( ( ( RR  X.  { A } )  oF  x.  F ) `  z )  =  B  <-> 
( A  x.  ( F `  z )
)  =  B ) )
14 eqcom 2629 . . . . . 6  |-  ( ( F `  z )  =  ( B  /  A )  <->  ( B  /  A )  =  ( F `  z ) )
15 simplr 792 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  RR )
1615recnd 10068 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  CC )
173ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  RR )
1817recnd 10068 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  CC )
196ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  F : RR --> RR )
2019ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( F `  z )  e.  RR )
2120recnd 10068 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( F `  z )  e.  CC )
22 simpllr 799 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  =/=  0
)
2316, 18, 21, 22divmuld 10823 . . . . . 6  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( B  /  A )  =  ( F `  z
)  <->  ( A  x.  ( F `  z ) )  =  B ) )
2414, 23syl5bb 272 . . . . 5  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( F `
 z )  =  ( B  /  A
)  <->  ( A  x.  ( F `  z ) )  =  B ) )
2513, 24bitr4d 271 . . . 4  |-  ( ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( ( ( RR  X.  { A } )  oF  x.  F ) `  z )  =  B  <-> 
( F `  z
)  =  ( B  /  A ) ) )
2625pm5.32da 673 . . 3  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  (
( z  e.  RR  /\  ( ( ( RR 
X.  { A }
)  oF  x.  F ) `  z
)  =  B )  <-> 
( z  e.  RR  /\  ( F `  z
)  =  ( B  /  A ) ) ) )
27 remulcl 10021 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
2827adantl 482 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  RR )
29 fconstg 6092 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( RR  X.  { A }
) : RR --> { A } )
303, 29syl 17 . . . . . . . 8  |-  ( ph  ->  ( RR  X.  { A } ) : RR --> { A } )
313snssd 4340 . . . . . . . 8  |-  ( ph  ->  { A }  C_  RR )
3230, 31fssd 6057 . . . . . . 7  |-  ( ph  ->  ( RR  X.  { A } ) : RR --> RR )
33 inidm 3822 . . . . . . 7  |-  ( RR 
i^i  RR )  =  RR
3428, 32, 6, 2, 2, 33off 6912 . . . . . 6  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F ) : RR --> RR )
3534ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  (
( RR  X.  { A } )  oF  x.  F ) : RR --> RR )
36 ffn 6045 . . . . 5  |-  ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> RR  ->  (
( RR  X.  { A } )  oF  x.  F )  Fn  RR )
3735, 36syl 17 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  (
( RR  X.  { A } )  oF  x.  F )  Fn  RR )
38 fniniseg 6338 . . . 4  |-  ( ( ( RR  X.  { A } )  oF  x.  F )  Fn  RR  ->  ( z  e.  ( `' ( ( RR  X.  { A } )  oF  x.  F ) " { B } )  <->  ( z  e.  RR  /\  ( ( ( RR  X.  { A } )  oF  x.  F ) `  z )  =  B ) ) )
3937, 38syl 17 . . 3  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  (
z  e.  ( `' ( ( RR  X.  { A } )  oF  x.  F )
" { B }
)  <->  ( z  e.  RR  /\  ( ( ( RR  X.  { A } )  oF  x.  F ) `  z )  =  B ) ) )
4019, 7syl 17 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  F  Fn  RR )
41 fniniseg 6338 . . . 4  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { ( B  /  A ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( B  /  A
) ) ) )
4240, 41syl 17 . . 3  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  (
z  e.  ( `' F " { ( B  /  A ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( B  /  A
) ) ) )
4326, 39, 423bitr4d 300 . 2  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  (
z  e.  ( `' ( ( RR  X.  { A } )  oF  x.  F )
" { B }
)  <->  z  e.  ( `' F " { ( B  /  A ) } ) ) )
4443eqrdv 2620 1  |-  ( ( ( ph  /\  A  =/=  0 )  /\  B  e.  RR )  ->  ( `' ( ( RR 
X.  { A }
)  oF  x.  F ) " { B } )  =  ( `' F " { ( B  /  A ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   {csn 4177    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   RRcr 9935   0cc0 9936    x. cmul 9941    / cdiv 10684   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-sum 14417  df-itg1 23389
This theorem is referenced by:  i1fmulc  23470  itg1mulc  23471
  Copyright terms: Public domain W3C validator