| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1fmulclem | Structured version Visualization version Unicode version | ||
| Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1fmulc.2 |
|
| i1fmulc.3 |
|
| Ref | Expression |
|---|---|
| i1fmulclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 10027 |
. . . . . . . . . 10
| |
| 2 | 1 | a1i 11 |
. . . . . . . . 9
|
| 3 | i1fmulc.3 |
. . . . . . . . 9
| |
| 4 | i1fmulc.2 |
. . . . . . . . . . 11
| |
| 5 | i1ff 23443 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . 10
|
| 7 | ffn 6045 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | syl 17 |
. . . . . . . . 9
|
| 9 | eqidd 2623 |
. . . . . . . . 9
| |
| 10 | 2, 3, 8, 9 | ofc1 6920 |
. . . . . . . 8
|
| 11 | 10 | adantlr 751 |
. . . . . . 7
|
| 12 | 11 | adantlr 751 |
. . . . . 6
|
| 13 | 12 | eqeq1d 2624 |
. . . . 5
|
| 14 | eqcom 2629 |
. . . . . 6
| |
| 15 | simplr 792 |
. . . . . . . 8
| |
| 16 | 15 | recnd 10068 |
. . . . . . 7
|
| 17 | 3 | ad3antrrr 766 |
. . . . . . . 8
|
| 18 | 17 | recnd 10068 |
. . . . . . 7
|
| 19 | 6 | ad2antrr 762 |
. . . . . . . . 9
|
| 20 | 19 | ffvelrnda 6359 |
. . . . . . . 8
|
| 21 | 20 | recnd 10068 |
. . . . . . 7
|
| 22 | simpllr 799 |
. . . . . . 7
| |
| 23 | 16, 18, 21, 22 | divmuld 10823 |
. . . . . 6
|
| 24 | 14, 23 | syl5bb 272 |
. . . . 5
|
| 25 | 13, 24 | bitr4d 271 |
. . . 4
|
| 26 | 25 | pm5.32da 673 |
. . 3
|
| 27 | remulcl 10021 |
. . . . . . . 8
| |
| 28 | 27 | adantl 482 |
. . . . . . 7
|
| 29 | fconstg 6092 |
. . . . . . . . 9
| |
| 30 | 3, 29 | syl 17 |
. . . . . . . 8
|
| 31 | 3 | snssd 4340 |
. . . . . . . 8
|
| 32 | 30, 31 | fssd 6057 |
. . . . . . 7
|
| 33 | inidm 3822 |
. . . . . . 7
| |
| 34 | 28, 32, 6, 2, 2, 33 | off 6912 |
. . . . . 6
|
| 35 | 34 | ad2antrr 762 |
. . . . 5
|
| 36 | ffn 6045 |
. . . . 5
| |
| 37 | 35, 36 | syl 17 |
. . . 4
|
| 38 | fniniseg 6338 |
. . . 4
| |
| 39 | 37, 38 | syl 17 |
. . 3
|
| 40 | 19, 7 | syl 17 |
. . . 4
|
| 41 | fniniseg 6338 |
. . . 4
| |
| 42 | 40, 41 | syl 17 |
. . 3
|
| 43 | 26, 39, 42 | 3bitr4d 300 |
. 2
|
| 44 | 43 | eqrdv 2620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-sum 14417 df-itg1 23389 |
| This theorem is referenced by: i1fmulc 23470 itg1mulc 23471 |
| Copyright terms: Public domain | W3C validator |